Skip to main content
Log in

Visual and spectrophotometric determination of mercury(II) using silver nanoparticles modified with graphene oxide

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors describe the ultrasound-assisted synthesis of a graphene oxide-silver (GO-Ag) nanocomposite for the determination of mercury(II) (Hg(II)) using spectrophotometriy. The nanocomposite was characterized by UV-visible absorption spectra, XRD, TEM and Raman analyses. The spectral and colorimetric methods were performed for the optical determination of Hg(II). The reduction of absorption intensity with blue shift in the absorption band of Ag nanoparticles and the color change of the yellow nanocomposite solution were observed during the determination of Hg(II). The limit of detection was found to be 0.59 μM. The GO-Ag nanocomposite exhibited good selectivity toward the determination of Hg(II) in the presence of higher concentration of other environmentally relevant heavy metal ions.

We developed a simple and cost effective assay for the optical determination of Hg(II) using graphene oxide-silver nanocomposite. A distinct color change is observed on addition of Hg(II). The limit of detection is 0.59 μM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Jana NR, Sau TK, Pal T (1998) Growing small silver particle as redox catalyst. J Phys Chem B 103:115

    Article  Google Scholar 

  2. Songping W, Shuyuan M (2005) Preparation of ultrafine silver powder using ascorbic acid as reducing agent and its application in MLCI. Mater Chem Phys 89:423

    Article  Google Scholar 

  3. Agnihotri S, Mukherji S, Mukherji S (2014) Size-controlled silver nanoparticles synthesized over the range 5-100 nm using the same protocol and their antibacterial efficacy. RSC Adv 4:3974

    Article  CAS  Google Scholar 

  4. Jain J, Arora S, Rajwade JM, Omray P, Khandelwal S, Paknikar KM (2009) Silver nanoparticles in therapeutics: development of an antimicrobial gel formulation for topical use. Mol Pharm 6:1388

    Article  CAS  Google Scholar 

  5. Frederix F, Friedt JM, Choi KH, Laureyn W, Campitelli A, Mondelaers D et al (2003) Biosensing based on light absorption of nanoscaled gold and silver particles. Anal Chem 75:6894

    Article  CAS  Google Scholar 

  6. Nickel U, Castell AZ, Poppl K, Schneider S (2000) A silver colloid produced by reduction with hydrazine as support for highly sensitive surface-enhanced Raman spectroscopy. Langmuir 16:9087

    Article  CAS  Google Scholar 

  7. Li J, Liu CY (2010) Ag/graphene heterostructures: synthesis, characterization and optical properties. Eur J Inorg Chem 2010:1244

    Article  Google Scholar 

  8. Kochmann S, Hirsch T, Wolfbeis OS (2012) Graphenes in chemical sensors and biosensors. Trends Anal Chem 39:87

    Article  CAS  Google Scholar 

  9. Zhao H, Fu H, Tian C, Ren Z, Tian G (2010) Fabrication of silver nanoparticles/singlewalled carbon nanotubes composite for surface-enhanced Raman scattering. J Colloid Interface Sci 351:343

    Article  CAS  Google Scholar 

  10. Zhou X, Huang X, Qi X, Wu S, Xue C, Boey FYC et al (2009) In situ synthesis of metal nanoparticles on single-layer graphene oxide and reduced graphene oxide surfaces. J Phys Chem C 113:10842

    Article  CAS  Google Scholar 

  11. Liu S, Tian J, Wang L, Sun X (2011) A method for the production of reduced graphene oxide using benzylamine as a reducing and stabilizing agent and its subsequent decoration with Ag nanoparticles for enzymeless hydrogen peroxide detection. Carbon 49:3158

    Article  CAS  Google Scholar 

  12. Paredes JI, Rodil SV, Alonso AM, Tascon JMD (2008) Graphene oxide dispersions in organic solvents. Langmuir 19:10560

    Article  Google Scholar 

  13. Tian J, Liu S, Zhang Y, Li H, Wang L, Luo Y et al (2012) Environmentally friendly, one-pot synthesis of Ag nanoparticle-decorated reduced graphene oxide composites and their application to photocurrent generation. Inorg Chem 51:4742

    Article  CAS  Google Scholar 

  14. Tripathy SK, Mishra A, Jha SK, Wahab R, Al-Khedhairy AA (2013) Synthesis of thermally stable monodispersed Au@Sn2 core-shell structure nanoparticles by a sonochemical technique for detection and degradation of acetaldehyde. Anal Methods 5:1456

    Article  CAS  Google Scholar 

  15. Darroudi M, Khorsand Zak A, Muhamad MR, Huang NM, Hakimi M (2012) Green synthesis of colloidal silver nanoparticles by sonochemical method. Mater Lett 66:117

    Article  CAS  Google Scholar 

  16. Zak AK, Majid WHA, Wang HZ, Youse R, Moradi Golsheikh A, Ren ZF (2013) Sonochemical synthesis of hierarchical ZnO nanostructures. Ultrason Sonochem 20:395

    Article  Google Scholar 

  17. Geng J, Jia XD, Zhu JJ (2011) Sonochemical selective synthesis of ZnO/CdS core shell nanostructures and their optical properties. Cryst Eng Commun 13:193

    Article  CAS  Google Scholar 

  18. Amini MK, Khezri B, Firooz AR (2008) Development of a highly sensitive and selective optical chemical sensor for batch and flow–through determination of mercury ion. Sens Actuators B 131:470

    Article  CAS  Google Scholar 

  19. Clarkson TW, Magos L, Myers GJ (2003) The toxicology of mercury–current exposures and clinical manifestations. N Engl J Med 349:1731

    Article  CAS  Google Scholar 

  20. Chen Y, Yao L, Deng Y, Pan D, Ogabiela E, Cao J, Adeloju SB, Chen W (2015) Rapid and ultrasensitive colorimetric detection of mercury(II) by chemically initiated aggregation of gold nanoparticles. Microchim Acta. doi:10.1007/s00604-015-1538-0

    Google Scholar 

  21. Abdelhamid HN, Wu H-F (2015) Reduced graphene oxide conjugate thymine as a new probe for ultrasensitive and selective fluorometric determination of mercury(II) ions. Microchim Acta 182:1609

    Article  CAS  Google Scholar 

  22. Farhadi K, Forough M, Molaei R, Hajizadeh S, Rafipour A (2012) Highly selective Hg2+ colorimetric sensor using green synthesized and unmodified silver nanoparticles. Sens Actuators B 161:880

    Article  CAS  Google Scholar 

  23. Rameshkumar P, Viswanathan P, Ramaraj R (2014) Silicate sol–gel stabilized silver nanoparticles for sensor applications toward mercuric ions, hydrogen peroxide and nitrobenzene. Sens Actuators B 202:1070

    Article  CAS  Google Scholar 

  24. Lim HN, Huang NM, Lim SS, Harrison I, Chia CH (2011) Fabrication and characterization of graphene hydrogel via hydrothermal approach as a scaffold for preliminary study of cell growth. Int J Nanomed 6:1817

    Article  CAS  Google Scholar 

  25. Maduraiveeran G, Ramaraj R (2011) Silver nanoparticles embedded in amine-functionalized silicate sol–gel network assembly for sensing cysteine, adenosine and NADH. J Nanopart Res 13:4267

    Article  CAS  Google Scholar 

  26. Ikhsan NI, Rameshkumar P, Pandikumar A, Shahid MM, Huang NM, Kumar SV, Lim HN (2015) Facile synthesis of graphene oxide–silver nanocomposite and its modified electrode for enhanced electrochemical detection of nitrite ions. Talanta 144:908

    Article  CAS  Google Scholar 

  27. Radhakrishnan S, Krishnamoorthy K, Sekar C, Wilson J, Kim SJ (2014) A highly sensitive electrochemical sensor for nitrite detection based on Fe2O3 nanoparticles decorated reduce graphene oxide nanosheets. Appl Catal B 148:22

    Article  Google Scholar 

  28. Ferrari AC, Robertson J (2000) Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B Condens Matter 61:14095

    Article  CAS  Google Scholar 

  29. Lambert TN, Chavez CA, Hernandez-Sanchez B, Lu P, Bell NS, Ambrosini A, Friedman T, Boyle TJ, Wheeler DR, Huber DL (2009) Synthesis and characterization of titania-graphene nanocomposites. J Phys Chem C 113:19812

    Article  CAS  Google Scholar 

  30. Rameshkumar P, Manivannan S, Ramaraj R (2013) Silver nanoparticles deposited on amine–functionalized silica spheres and their amalgamation–based spectral and colorimetric detection of Hg(II) ions. J Nanopart Res 15:1639

    Article  Google Scholar 

  31. Anbazhagan V, Ahmed KBA, Janani S (2014) Synthesis of catalytically active silver nanoparticles using lipid derived signaling molecule, N-steroylethanolamine: promising antibacterial agent and selective colorimetric sensor for mercury ion. Sens Actuators B 200:92

    Article  CAS  Google Scholar 

  32. Mehta VN, Kailasa SK (2015) Malonamide dithiocarbamate functionalized gold nanoparticles for colorimetric sensing of Cu2+ and Hg2+ ions. RSC Adv 5:4245

    Article  CAS  Google Scholar 

  33. Jayabal S, Sathiyamurthi R, Ramaraj R (2014) Selective sensing of Hg2+ ions by opticaland colorimetric methods using gold nanorods embedded in a functionalizedsilicate sol–gel matrix. J Mater Chem A 2:8918

    Article  CAS  Google Scholar 

  34. Guo Y, Wang Z, Qu W, Shao H, Jiang X (2011) Colorimetric detection of mercury, lead and copper ions simultaneously using protein-functionalized gold nanoparticles. Biosens Bioelectron 26:4064

    Article  CAS  Google Scholar 

  35. Annadhasan M, Muthukumarasamyvel T, Sankar Babu VR, Rajendiran N (2014) Green synthesized silver and gold nanoparticles for colorimetric detection of Hg2+, Pb2+, and Mn2+ in aqueous medium. ACS Sustainable Chem Eng 2:887

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a University of Malaya Research Grant, UMRG Programme (RP007C/13AFR), Post Graduate Research Grant of University Malaya (PG074-2013B) and a High Impact Research Grant from the Ministry of Higher Education of Malaysia (UM.C/625/1/HIR/MOHE/05). The authors acknowledge University Malaya Flagship project (FL017-2011) and are grateful to the Synchrotron Light Research Institute, Nakhon Ratchasima, Thailand, for the XPS measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nay Ming Huang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 44 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noor, A.M., Rameshkumar, P., Huang, N.M. et al. Visual and spectrophotometric determination of mercury(II) using silver nanoparticles modified with graphene oxide. Microchim Acta 183, 597–603 (2016). https://doi.org/10.1007/s00604-015-1680-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-015-1680-8

Keywords

Navigation