Skip to main content
Log in

A resistive type humidity sensor based on crystalline tin oxide nanoparticles encapsulated in polyaniline matrix

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We have synthesized a nanocomposite consisting of crystalline tin oxide (SnO2) nanoparticles and polyaniline (PANI) by in-situ polymerization and composite formation (IPCF). The structure and morphology was characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). The nanocomposite is shown to represent a viable material for electrical resistivity based sensing of humidity in the 5 to 90 % relative humidity (RH) range. The electrical resistance of the composite linearly decreases from 127.5 to 11.5 kΩ with humidity from 5 to 95 %. The sensitivity is 0.22 % RH‾1, the response time is 26 s, and the recovery time is 30 s. The fabrication of SnO2/PANI composite combines the high sensitivity of SnO2 towards moisture with good electrical conductivity of PANI, which influences the electronic properties of the material and enables the design of more efficient humidity sensors. The water vapor layering growth kinetics on the composite was investigated by isothermal thermogravimetric analysis and an interaction with limited diffusion aggregate type kinetics has been proposed.

A facile, single step, synthesis method (i.e., in-situ polymerization and composite formation) has been used for the preparation of a tin oxide and polyaniline, a metallo-macromolecule complex that has been shown as an effective interface towards humidity sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Fraden J (2010) Handbook of modern sensors physics, designs, and applications, 3rd edn. Springer, New York

    Book  Google Scholar 

  2. Chen Z, Lu C (2005) Humidity sensors: a review of materials and mechanisms. Sens Lett 3:274–295

    Article  CAS  Google Scholar 

  3. Fernandez-Garcıa M, Martınez-Arias A, Hansonand JC, Rodriguez JA (2004) Nanostructured oxides in chemistry: characterization and properties. Chem Rev 104:4063–4104

    Article  Google Scholar 

  4. Shukla SK, Parashar GK, Mishra AP, Mishra P, Yadav BC, Shukla RK, Bali LM, Dubey GC (2004) Nano-like magnesium oxide films and its significance in optical fiber humidity Sensor. Sens Actuators B 98:5–11

    Article  CAS  Google Scholar 

  5. Shukla SK, Tiwari A, Parashar GK, Mishra AP, Dubey GC (2009) Exploring fiber optic approach to sense humid environment over nano-crystalline zinc oxide film. Talanta 80:565–571

    Article  CAS  Google Scholar 

  6. Shukla SK, Bharadvaja A, Tiwari A, Parashar GK, Mishra AP, Dubey GC (2012) Fabrication of ultra-sensitive optical fiber based humidity sensor using TiO2 thin film. Adv Mater Lett 3:365–370

    Article  CAS  Google Scholar 

  7. Yiheng QY, Howlader MR, Deen MJ, Haddara YM, Selvaganapathy PR (2014) Polymer integration for packaging of implantable sensors. Sens Actuators B 202:758–778

    Article  Google Scholar 

  8. Ramprasad AT, Rao V (2010) Chitin-polyaniline blend as a humidity sensor. Sens Actuators B 148:117–125

    Article  Google Scholar 

  9. Shukla SK (2013) Synthesis and characterization of polypyrrole grafted cellulose for humidity sensing. Int J Biol Macromol 62:531–536

    Article  CAS  Google Scholar 

  10. Su P-G, Huang L-N (2007) Humidity sensors based on TiO2 nanopaticles/polypyrrole composite thin films. Sens Actuators B 123:501–507

    Article  CAS  Google Scholar 

  11. Shukla SK, Vamakshi, Minakshi, Bharadavaja A, Shekhar A, Tiwari A (2012) Fabrication of electro-chemical humidity sensor based on zinc/polyaniline nanocomposites. Adv Mater Lett 3:421–425

    Article  CAS  Google Scholar 

  12. Shukla SK (2012) Synthesis of polyaniline grafted cellulose suitable for humidity sensing. Ind J Eng Mater Sci 19:417–420

    CAS  Google Scholar 

  13. Shukla SK, Bharadvaja A, Tiwari A, Pilla S, Parashar GK, Dubey GC (2010) Synthesis and characterization of highly crystalline polyaniline film promising for humid sensor. Adv Mater Lett 1:129–134

    Article  CAS  Google Scholar 

  14. Quang Q, Lao C, Wang ZL, Xie Z, Zhang ZL (2007) High-sensitivity humidity sensor based on a single SnO2 nanowire. J Am Chem Soc 129:6070–6071

    Article  Google Scholar 

  15. Singla ML, Awasthi S, Srivastava A (2007) Humidity sensing: using polyaniline/Mn3O4 composite doped with organic/inorganic acid. Sens Actuators B 127:580–585

    Article  CAS  Google Scholar 

  16. Ying Z, Wan Q, Song ZT, Feng SL (2004) SnO2 nanowhiskers and their ethanol sensing characteristics. Nanotechnology 15:1682

    Article  CAS  Google Scholar 

  17. Peng Z, Shi Z, Liu M (2000) Mesoporous Sn-TiO2 nanocomposite electrodes for lithium batteries. Chem Commun 21:2125–2126

    Article  Google Scholar 

  18. Aoki A, Sasakura H (1970) Tin oxide thin film transistors. J Appl Phys 9:582–584

    Article  CAS  Google Scholar 

  19. Ma N, Suematsu K, Yuasa M, Kida T, Shimanoe K (2015) Effect of water vapor on Pd-loaded SnO2 nanoparticles gas sensor. ACS Appl Mater Interfaces 7:5863–5869

    Article  CAS  Google Scholar 

  20. Bing Y, Zeng Y, Liu C, Qiao L, Sui Y, Zou B, Zheng W, Zou G (2014) Assembly of hierarchical ZnSnO3 hollow microspheres from ultra-thin nanorods and the enhanced ethanol-sensing performances. Sens Actuators B 190:370–377

    Article  CAS  Google Scholar 

  21. Murugan C, Subramanian E, Pathinettam DP (2014) Enhanced sensor functionality of in situ synthesized polyaniline–SnO2 hybrids toward benzene and toluene vapors. Sens Actuators B 205:74–81

    Article  CAS  Google Scholar 

  22. Parvatikar N, Jain S, Khasim S, Revansiddapp M, Bhoraskar SV, Prasad A (2006) Electrical and humidity sensing properties of polyaniline/WO3 composite. Sens Actuators B 114:599–603

    Article  CAS  Google Scholar 

  23. Assay DB, Kim SH (2005) Evolution of the adsorbed water layer structure on silicon oxide at room temperature. J Phys Chem B 109:16760–16763

    Article  Google Scholar 

  24. Li Q, Li Y, Yang M (2012) Investigation on the sensing mechanism of humidity sensor based on electrospun polymer nanofibers. Sens Actuators B 171–172:309–314

    Google Scholar 

  25. Barsan N, Schweizer-Berberich M, Göpel W (1999) Fundamental and practical aspects in the design of nanoscaled SnO2 gas sensor: a status report. Fresenius J Anal Chem 365:287–304

    Article  CAS  Google Scholar 

  26. Rastogi RP, Shukla SK, Singh NB (2010) Synthesis of NiO nano crystal though nitrate eutectic melt. Ind J Eng Mater Sci 17:477–480

    CAS  Google Scholar 

  27. Korotchenkov G, Brynzari V, Dmitriev S (1999) Electrical behavior of SnO2 thin films in humid atmosphere. Sens Actuators B 54:197–201

    Article  CAS  Google Scholar 

  28. Batzill M (2006) Surface science studies of gas sensing materials: SnO2. Sensors 6:1345–1366

    Article  CAS  Google Scholar 

  29. Popova LI, Andreev SK, Gueorguiev VK, Stoyanov ND (1996) Pulse mode of operation of diode humidity sensors. Sens Actuators B 37:1–5

    Article  CAS  Google Scholar 

  30. Mostafaei A, Zolriasatein A (2012) Synthesis and characterization of conducting polyaniline nanocomposites containing ZnO nanorods. Prog Nat Sci Mater Int 22:273–280

    Article  Google Scholar 

  31. Shukla SK, Singh NB, Rastogi RP (2015) Nanosize SnO2 through nitrate eutectic mixture for humidity sensors. Emerg Mater Res 4(1):27–43

    Google Scholar 

  32. Zhuo M, Chen Y, Sun J, Zhang H, Guo D, Zhang H, Li Q, Wang T, Wan Q (2013) Humidity sensing properties of a single Sb doped SnO2 nanowire field effect transistor. Sens Actuators B 186:78–83

    Article  CAS  Google Scholar 

  33. Agastino R, Favia P, Oehr C, Wertheimer MR (2005) Low-temperature plasma processing of materials: past, present and future. Plasma Process Polym 2:7–15

    Article  Google Scholar 

  34. Gercher VA, Cox DF (1995) Water adsorption on stoichiometric and defective SnO2(110) surfaces. Surf Sci 322:177–184

    Article  CAS  Google Scholar 

  35. Matsuguchi M, Umeda S, Sadaoka Y, Sakai Y (1998) Characterization of polymers for a capacitive-type humidity sensor based on water sorption behavior. Sens Actuators B 49:179–185

    Article  CAS  Google Scholar 

  36. Ando M, Swart C, Pringsheim E, Mirsky VM, Wolfbeis OS (2005) Optical ozone-sensing properties of poly(2-chloroaniline), poly(N-methylaniline) and polyaniline films. Sems Actuators B 108:528–534

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the University Grant Commission (MRP. 8-3(47)/2011), New Delhi for generous financial support to carry out this work. SKS and ESA also acknowledge financial support from Global Excellence and Stature (GES) fellowship from the University of Johannesburg. Authors are thankful to the reviewers for their constructive comments to improve the quality of manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Saroj K. Shukla or Sudheesh K. Shukla.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 111 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shukla, S.K., Shukla, S.K., Govender, P.P. et al. A resistive type humidity sensor based on crystalline tin oxide nanoparticles encapsulated in polyaniline matrix. Microchim Acta 183, 573–580 (2016). https://doi.org/10.1007/s00604-015-1678-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-015-1678-2

Keywords

Navigation