Skip to main content
Log in

Solid phase extraction of mercury(II) using soluble eggshell membrane protein doped with reduced graphene oxide, and its quantitation by anodic stripping voltammetry

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

This article describes the preparation of a nanocomposite consisting of soluble eggshell membrane protein (SEP) doped with reduced graphene oxide (rGO) as a sorbent for the preconcentration of mercury(II) by solid phase extraction (SPE). Incorporation of rGO was accomplished by dissolving the eggshell membrane in a mixture of thioglycolic acid and acetic acid, adding graphene oxide, and sonicating the solution. The brown GO-SEP nanocomposite was then chemically reduced to black rGO-SEP using hydrazine as the reducing agent. The nanocomposite was found to be an efficient nanosorbent for SPE of mercury(II). Following desorption of Hg(II) ions from the sorbent with thiourea, Hg(II) was quantified by anodic stripping voltammetry. Under optimized extraction and electroanalytical conditions, the method has a wide analytical range that is linear in the 0.5–80 ng mL−1 Hg(II) concentration range. The lower detection limit is 0.14 mg mL−1, the enrichment factor is 50, and the sorption capacity is as high as 77 mg g−1.

Solid phase extraction and preconcentration procedure of mercury(II) using reduced graphene oxide doped soluble eggshell membrane protein nanocomposite: Quantitation and analysis by anodic stripping voltammetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Leopold K, Foulkes M, Worsfold P (2010) Methods for the determination and speciation of mercury in natural waters—a review. Anal Chim Acta 663(2):127–138

    Article  CAS  Google Scholar 

  2. Sohrabi M (2014) Preconcentration of mercury(II) using a thiol-functionalized metal-organic framework nanocomposite as a sorbent. Microchim Acta 181(3):435–444

    Article  CAS  Google Scholar 

  3. Gao C, Huang X-J (2013) Voltammetric determination of mercury(II). TrAC Trends Anal Chem 51:1–12

    Article  Google Scholar 

  4. Averyaskina EO, Ermakov SS, Moskvin LN (2006) Determination of mercury in air by stripping voltammetry with chromatomembrane preconcentration. J Anal Chem 61(11):1100–1103

    Article  CAS  Google Scholar 

  5. Fernández E, Vidal L, Martín-Yerga D, Blanco MC, Canals A, Costa-García A (2015) Screen-printed electrode based electrochemical detector coupled with ionic liquid dispersive liquid–liquid microextraction and microvolume back-extraction for determination of mercury in water samples. Talanta 135:34–40

    Article  Google Scholar 

  6. Mandil A, Idrissi L, Amine A (2010) Stripping voltammetric determination of mercury(II) and lead(II) using screen-printed electrodes modified with gold films, and metal ion preconcentration with thiol-modified magnetic particles. Microchim Acta 170(3–4):299–305

    Article  CAS  Google Scholar 

  7. Ye N, Shi P (2014) Applications of graphene-based materials in solid-phase extraction and solid-phase microextraction. Sep Purif Rev 44(3):183–198

    Article  Google Scholar 

  8. Herrero Latorre C, Álvarez Méndez J, Barciela García J, García Martín S, Peña Crecente RM (2012) Carbon nanotubes as solid-phase extraction sorbents prior to atomic spectrometric determination of metal species: a review. Anal Chim Acta 749:16–35

    Article  CAS  Google Scholar 

  9. Aziz-Zanjani M, Mehdinia A (2014) A review on procedures for the preparation of coatings for solid phase microextraction. Microchim Acta 181(11):1169–1190

    Article  CAS  Google Scholar 

  10. Lucci P, Derrien D, Alix F, Pérollier C, Bayoudh S (2010) Molecularly imprinted polymer solid-phase extraction for detection of zearalenone in cereal sample extracts. Anal Chim Acta 672(1–2):15–19

    Article  CAS  Google Scholar 

  11. Zhang B, Zhao J, Sha B, Xian M (2012) Selective solid-phase extraction using molecularly imprinted polymers for the analysis of norfloxacin in fish. Anal Methods 4(10):3187–3192

    Article  CAS  Google Scholar 

  12. Bahrami A, Besharati-Seidani A, Abbaspour A, Shamsipur M (2015) A highly selective voltammetric sensor for nanomolar detection of mercury ions using a carbon ionic liquid paste electrode impregnated with novel ion imprinted polymeric nanobeads. Mater Sci Eng C 48:205–212

    Article  CAS  Google Scholar 

  13. Gong J, Wang L, Miao X, Zhang L (2010) Efficient stripping voltammetric detection of organophosphate pesticides using NanoPt intercalated Ni/Al layered double hydroxides as solid-phase extraction. Electrochem Commun 12(11):1658–1661

    Article  CAS  Google Scholar 

  14. Shirkhanloo H, Khaligh A, Mousavi HZ, Rashidi A (2014) Graphene oxide-packed micro-column solid-phase extraction combined with flame atomic absorption spectrometry for determination of lead (II) and nickel (II) in water samples. Int J Environ Anal Chem 95(1):16–32

    Article  Google Scholar 

  15. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6(3):183–191

    Article  CAS  Google Scholar 

  16. Yazyev OV, Chen YP (2014) Polycrystalline graphene and other two-dimensional materials. Nat Nanotechnol 9(10):755–767

    Article  CAS  Google Scholar 

  17. Liu Q, Shi J, Jiang G (2012) Application of graphene in analytical sample preparation. TrAC Trends Anal Chem 37:1–11

    Article  Google Scholar 

  18. Cao Y, Li X (2014) Adsorption of graphene for the removal of inorganic pollutants in water purification: a review. Adsorption 20(5–6):713–727

    Article  CAS  Google Scholar 

  19. Sadanala K, Chung B (2013) Graphene nanoplatelets as a solid phase extraction sorbent for analysis of chlorophenols in water. J Korean Soc Appl Biol Chem 56(6):673–678

    Article  CAS  Google Scholar 

  20. Muley S, Ravindra N (2014) Graphene–environmental and sensor applications. In: Hu A, Apblett A (eds). Nanotechnology for water treatment and purification, vol. 22. Springer International Publishing, pp 159–224

  21. Liu C, Yang J, Tang Y, Yin L, Tang H, Li C (2015) Versatile fabrication of the magnetic polymer-based graphene foam and applications for oil–water separation. Colloids Surf A Physicochem Eng Asp 468:10–16

    Article  CAS  Google Scholar 

  22. Mehdinia A, Khodaee N, Jabbari A (2015) Fabrication of graphene/Fe3O4@polythiophene nanocomposite and its application in the magnetic solid-phase extraction of polycyclic aromatic hydrocarbons from environmental water samples. Anal Chim Acta 868:1–9

    Article  CAS  Google Scholar 

  23. Ziaei E, Mehdinia A, Jabbari A (2014) A novel hierarchical nanobiocomposite of graphene oxide–magnetic chitosan grafted with mercapto as a solid phase extraction sorbent for the determination of mercury ions in environmental water samples. Anal Chim Acta 850:49–56

    Article  CAS  Google Scholar 

  24. Li Y, Xu H (2015) Development of a novel graphene/polyaniline electrodeposited coating for on-line in-tube solid phase microextraction of aldehydes in human exhaled breath condensate. J Chromatogr A 1395:23–31

    Article  CAS  Google Scholar 

  25. Cao W, Hu S-S, Ye L-H, Cao J, Xu J-J, Pang X-Q (2015) Trace-chitosan-wrapped multi-walled carbon nanotubes as a new sorbent in dispersive micro solid-phase extraction to determine phenolic compounds. J Chromatogr A 1390:13–21

    Article  CAS  Google Scholar 

  26. Huang Z, Chua PE, Lee HK (2015) Carbonized polydopamine as coating for solid-phase microextraction of organochlorine pesticides. J Chromatogr A 1399:8–17

    Article  CAS  Google Scholar 

  27. Chang H, Wu H (2013) Graphene-based nanocomposites: preparation, functionalization, and energy and environmental applications. Energy Environ Sci 6(12):3483–3507

    Article  CAS  Google Scholar 

  28. Mittal V (2014) Functional polymer nanocomposites with graphene: a review. Macromol Mater Eng 299(8):906–931

    Article  CAS  Google Scholar 

  29. Khalilian F, Hanzaki SA, Yousefi M (2015) Synthesis of a graphene-based nanocomposite for the dispersive solid-phase extraction of vancomycin from biological samples. J Sep Sci 38(6):975–981

    Article  CAS  Google Scholar 

  30. Wang W, Chen B, Huang Y (2014) Eggshell membrane-based biotemplating of mixed hemimicelle/admicelle as a solid-phase extraction adsorbent for carcinogenic polycyclic aromatic hydrocarbons. J Agric Food Chem 62(32):8051–8059

    Article  CAS  Google Scholar 

  31. Wang W, Chen B, Huang Y, Cao J (2010) Evaluation of eggshell membrane-based bio-adsorbent for solid-phase extraction of linear alkylbenzene sulfonates coupled with high-performance liquid chromatography. J Chromatogr A 1217(36):5659–5664

    Article  CAS  Google Scholar 

  32. Zhang Y, Wang W, Li L, Huang Y, Cao J (2010) Eggshell membrane-based solid-phase extraction combined with hydride generation atomic fluorescence spectrometry for trace arsenic(V) in environmental water samples. Talanta 80(5):1907–1912

    Article  CAS  Google Scholar 

  33. Chen M-L, Gu C-B, Yang T, Sun Y, Wang J-H (2013) A green sorbent of esterified egg-shell membrane for highly selective uptake of arsenate and speciation of inorganic arsenic. Talanta 116:688–694

    Article  CAS  Google Scholar 

  34. Suyama K, Fukazawa Y, Umetsu Y (1994) Biosorption of precious metal ions by chicken feather. Appl Biochem Biotechnol 57(1):67–74

    Google Scholar 

  35. Wang S, Wei M, Huang Y (2013) Biosorption of multifold toxic heavy metal ions from aqueous water onto food residue eggshell membrane functionalized with ammonium thioglycolate. J Agric Food Chem 61(21):4988–4996

    Article  CAS  Google Scholar 

  36. Chen W, Li B, Xu C, Wang L (2009) Chemiluminescence flow biosensor for hydrogen peroxide using DNAzyme immobilized on eggshell membrane as a thermally stable biocatalyst. Biosens Bioelectron 24(8):2534–2540

    Article  CAS  Google Scholar 

  37. Mohammad-Rezaei R, Razmi H, Dehgan-Reyhan S (2014) Preparation of graphene oxide doped eggshell membrane bioplatform modified Prussian blue nanoparticles as a sensitive hydrogen peroxide sensor. Colloids Surf B: Biointerfaces 118:188–193

    Article  CAS  Google Scholar 

  38. Zou X, Huang Y (2013) Solid-phase extraction based on polyethyleneimine-modified eggshell membrane coupled with FAAS for the selective determination of trace copper(ii) ions in environmental and food samples. Anal Methods 5(22):6486–6493

    Article  CAS  Google Scholar 

  39. Yi F, Guo Z-X, Zhang L-X, Yu J, Li Q (2004) Soluble eggshell membrane protein: preparation, characterization and biocompatibility. Biomaterials 25(19):4591–4599

    Article  CAS  Google Scholar 

  40. Gao X, Jang J, Nagase S (2010) Hydrazine and thermal reduction of graphene oxide: reaction mechanisms, product structures, and reaction design. J Phys Chem C 114(2):832–842

    Article  CAS  Google Scholar 

  41. Park S, An J, Potts JR, Velamakanni A, Murali S, Ruoff RS (2011) Hydrazine-reduction of graphite- and graphene oxide. Carbon 49(9):3019–3023

    Article  CAS  Google Scholar 

  42. Shavandi MA, Haddadian Z, Ismail MHS, Abdullah N (2012) Continuous metal and residual oil removal from palm oil mill effluent using natural zeolite-packed column. J Taiwan Inst Chem Eng 43(6):934–941

    Article  CAS  Google Scholar 

  43. Karatas M (2012) Removal of Pb(II) from water by natural zeolitic tuff: kinetics and thermodynamics. J Hazard Mater 199–200:383–389

    Article  Google Scholar 

  44. Tükmen D, Öztük N, Akgöl S, Denizli A (2010) Chapter 2 - high capacity removal of mercury(II) ions by poly(hydroxyethyl methacrylate) nanoparticles. In: Wright MF-PHEBWS (ed) Environanotechnology. Elsevier, Amsterdam, pp 23–38

    Chapter  Google Scholar 

  45. Abolhasani J, Hosseinzadeh Khanmiri R, Babazadeh M, Ghorbani-Kalhor E, Edjlali L, Hassanpour A (2015) Determination of Hg(II) ions in sea food samples after extraction and preconcentration by novel Fe3O4@SiO2@polythiophene magnetic nanocomposite. Environ Monit Assess 187(554):1–11

    Google Scholar 

  46. Jiang H, Hu B, Jiang Z, Qin Y (2006) Microcolumn packed with YPA4 chelating resin on-line separation/preconcentration combined with graphite furnace atomic absorption spectrometry using Pd as a permanent modifier for the determination of trace mercury in water samples. Talanta 70(1):7–13

    Article  CAS  Google Scholar 

  47. Qu W, Zhai Y, Meng S, Fan Y, Zhao Q (2008) Selective solid phase extraction and preconcentration of trace mercury(II) with poly-allylthiourea packed columns. Microchim Acta 163(3):277–282

    Article  CAS  Google Scholar 

  48. Zhai Y, Chang X, Cui Y, Lian N, Lai S, Zhen H, He Q (2006) Selective determination of trace mercury (II) after preconcentration with 4-(2-pyridylazo)-resorcinol-modified nanometer-sized SiO2 particles from sample solutions. Microchim Acta 154(3):253–259

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the Research Council of Azarbaijan Shahid Madani University for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Habib Razmi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Razmi, H., Musevi, S.J. & Mohammad-Rezaei, R. Solid phase extraction of mercury(II) using soluble eggshell membrane protein doped with reduced graphene oxide, and its quantitation by anodic stripping voltammetry. Microchim Acta 183, 555–562 (2016). https://doi.org/10.1007/s00604-015-1665-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-015-1665-7

Keywords

Navigation