Skip to main content
Log in

Arsenazo III-functionalized gold nanoparticles for photometric determination of uranyl ion

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript


Gold nanoparticles (AuNPs) were functionalized with the indicator dye Arsenazo III via reductive synthesis of AuNPs in the presence of arsenazo III. The indicator dye is shown to be immobilized on the AuNPs via interaction between gold and sulfo groups. The functionalized AuNPs undergo aggregation in the presence of uranyl ion due to the coordination interaction between arsenazo III and uranyl ion. This is accompanied by a longwave shift of the surface plasmon resonance absorption band (from 535 nm to 548 nm) and an up to 46.8 % increase in absorbance. This finding forms the basis for a photometric assay for uranyl ion. It shows good selectivity and has a 0.5 μM detection limit. Applied to the determination of uranyl ion in spiked environmental water samples, the recoveries were between 97 and 106 %.

Arsenazo III dye functionalized gold nanoparticles (AuNPs) were prepared via a one-pot reduction reaction. Based on the coordination interaction of arsenazo III functionalized AuNPs and uranyl ion, an assay for uranyl ion was developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others


  1. Bhandari D, Wells S, Retterer S, Sepaniak M (2009) Characterization and detection of uranyl ion sorption on silver surfaces using surface enhanced raman spectroscopy. Anal Chem 81:8061–8067

    Article  CAS  Google Scholar 

  2. Zhou B, Shi L, Wang Y, Yang H, Xue J, Liu L, et al. (2013) Resonance light scattering determination of uranyl based on labeled DNAzyme-gold nanoparticle system. Spectrochim Acta A 110:419–424

    Article  CAS  Google Scholar 

  3. Peled Y, Krent E, Tal N, Tobias H, Mandler D (2014) Electrochemical determination of low levels of uranyl by a vibrating gold microelectrode. Anal Chem 87:768–776

    Article  Google Scholar 

  4. Chen X, He L, Wang Y, Liu B, Tang Y (2014) Trace analysis of uranyl ion (UO2 2+) in aqueous solution by fluorescence turn-on detection via aggregation induced emission enhancement effect. Anal Chim Acta 847:55–60

    Article  CAS  Google Scholar 

  5. Leonhard P, Pepelnik R, Prange A, Yamada N, Yamada T (2002) Analysis of diluted sea-water at the ng L− 1 level using an ICP-MS with an octopole reaction cell. J Anal Atom Spectrom 17:189–196

    Article  CAS  Google Scholar 

  6. Murty P, Barnes R (1986) Determination of trace rare earth elements in uranium by inductively coupled plasma atomic emission spectrometry. J Anal Atom Spectrom 1:145–148

    Article  CAS  Google Scholar 

  7. Toth L, Begun G (1981) Raman spectra of uranyl ion and its hydrolysis products in aqueous nitric acid. J Phys Chem 85:547–549

    Article  CAS  Google Scholar 

  8. Lee J, Wang Z, Liu J, Lu Y (2008) Highly sensitive and selective colorimetric assays for uranyl (UO2 2+): development and comparison of labeled and label-free DNAzyme-gold nanoparticle systems. J Am Chem Soc 130:14217–14226

    Article  CAS  Google Scholar 

  9. Tang Q, Yuan Y, Xiao X, Guo P, Hu J, Ma D, Gao Y (2013) DNAzyme based electrochemical sensors for trace uranium. Microchim Acta 180(11–12):1059–1064

    Article  CAS  Google Scholar 

  10. Zhou B, Shi L, Wang Y, Yang H, Xue J, Liu L, Wang Y, Yin J, Wang J (2013) Resonance light scattering determination of uranyl based on labeled DNAzyme-gold nanoparticle system. Spectrochim Acta A 110:419–424

    Article  CAS  Google Scholar 

  11. Jauberty L, Drogat N, Decossas J, Delpech V, Gloaguen V, Sol V (2013) Optimization of the arsenazo-III method for the determination of uranium in water and plant samples. Talanta 115:751–754

    Article  CAS  Google Scholar 

  12. Khan M, Warwick P, Evans N (2006) Spectrophotometric determination of uranium with arsenazo-III in perchloric acid. Chemosphere 63:1165–1169

    Article  CAS  Google Scholar 

  13. Kuroda R, Kurosaki M, Hayashibe Y, Ishimaru S (1990) Simultaneous determination of uranium and thorium with arsenazo III by second-derivative spectrophotometry. Talanta 37:619–624

    Article  CAS  Google Scholar 

  14. Strelow F, Van der Walt T, Kokot M, Bhaga B (1976) Rationalized determination of uranium in rocks for geochemical prospecting using separation by ion exchange chromatography and spectrophotometry with arsenazo (III). J S Afr Chem I 29:97–104

    CAS  Google Scholar 

  15. Saha K, Agasti S, Kim C, Li X, Rotello V (2012) Gold nanoparticles in chemical and biological sensing. Chem Rev 112:2739–2779

    Article  CAS  Google Scholar 

  16. Zeng S, Yong K, Roy I, Dinh X, Yu X, Luan F (2011) A review on functionalized gold nanoparticles for biosensing applications. Plasmonics 6:491–506

    Article  CAS  Google Scholar 

  17. Cao X, Zhang H, Ma R, Yang Q, Zhang Z, Liu Y (2015) Visual colorimetric detection of UO2 2+ using o-phosphorylethanolamine-functionalized gold nanoparticles. Assay Actuat B-Chem 218:67–72

    Article  CAS  Google Scholar 

  18. Ma M, Zhang Y, Yu W, Shen H, Zhang H, Gu N (2003) Preparation and characterization of magnetite nanoparticles coated by amino silane. Colloid Surface A 212:219–226

    Article  CAS  Google Scholar 

  19. Wang H, Li Y, Liu M, Gong M, Deng Z (2015) Overcoming the coupling dilemma in DNA-programmable nanoparticle assemblies by “Ag+ soldering”. Small 11:2247–2251

    Article  CAS  Google Scholar 

  20. Zhang Y, Price J, Karatchevtseva I, Lu K, Yoon B, Kadi F, et al. (2015) Comparison of uranium (VI) and thorium (IV) coordination polymers with p-toluenesulfonic acid. Polyhedron 91:98–103

    Article  CAS  Google Scholar 

  21. Paull B, Haddad P (1999) Chelation ion chromatography of trace metal ions using metallochromic ligands. TrAC Trends Anal Chem 18:107–114

    Article  CAS  Google Scholar 

  22. Dutta S, Ray C, Sarkar S, Pradhan M, Negishi Y, Pal T (2013) Silver nanoparticle decorated reduced graphene oxide (rGO) nanosheet: a platform for SERS based low-level detection of uranyl ion. ACS Appl Mater Interfaces 5:8724–8732

    Article  CAS  Google Scholar 

Download references


We gratefully acknowledge the Project 201510619047 supported by Sichuan’s Training Program of Innovation and Entrepreneurship for Undergraduate, Foundation of Science and Technology Department of Sichuan Province (Grant No. 2015JY0053), Doctoral Program of Southwest University of Science and Technology (Grant No. 14zx7165), and Teaching Reform Project of Southwest University of Science and Technology (Grant No. 15xn0077) is gratefully acknowledged.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Yi He.

Electronic supplementary material


(DOCX 58 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Y., He, Y. Arsenazo III-functionalized gold nanoparticles for photometric determination of uranyl ion. Microchim Acta 183, 407–413 (2016).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: