Skip to main content
Log in

Amperometric oxygen biosensor based on hemoglobin encapsulated in nanosized grafted starch particles

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors describe a nanosized oxygen biosensor based on grafted starch particles with encapsulated hemoglobin (GS-Hb). Transmission electron microscopy showed the GS-Hb particles to have a typical diameter of 573 nm. UV–vis absorption spectra showed that the hemoglobin in GS-Hb retains its biological activity in terms of carrying and releasing oxygen. Cyclic voltammetric studies were performed with GS-Hb particles placed in a chitosan matrix on a glassy carbon electrode, revealing a pair of nearly reversible redox peaks. At a working potential of −0.40 V (vs. SCE), a linear response is found over the 0.97 μM to 0.35 mM oxygen concentration range, and the lower detection limit is 0.32 μM (~5 ppb; at an S/N ratio of 3). This range is wider than that produced when using red blood cells. In addition, the GS-Hb particles have a better oxygen-carrying ability, which may pave the way to the creation of oxygen carriers for use in transfusions.

A glassy carbon electrode modified with hemoglobin in starch particles in a chitosan matrix shows excellent amperometric response to oxygen and also displays improved oxygen-carrying capability (compared to red blood cells).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Liu H, Duan C, Yang C, Shen W, Wang F, Zhu Z (2015) A novel nitrite biosensor based on the direct electrochemistry of hemoglobin immobilized on MXene-Ti3C2. Sensors Actuators B Chem 218:60–66. doi:10.1016/j.snb.2015.04.090

    Article  CAS  Google Scholar 

  2. Sun W, Hou F, Gong S, Han L, Wang W, Shi F, Xi J, Wang X, Li G (2015) Direct electrochemistry and electrocatalysis of hemoglobin on three-dimensional graphene modified carbon ionic liquid electrode. Sensors Actuators B Chem 219:331–337. doi:10.1016/j.snb.2015.05.015

    Article  CAS  Google Scholar 

  3. Mao S, Long Y, Li W, Tu Y, Deng A (2013) Core-shell structured Ag@C for direct electrochemistry and hydrogen peroxide biosensor applications. Biosens Bioelectron 48:258–262. doi:10.1016/j.bios.2013.04.026

    Article  CAS  Google Scholar 

  4. Chen X, Wang Q, Wang L, Gao F, Wang W, Hu Z (2015) Imidazoline derivative templated synthesis of broccoli-like Bi2S3 and its electrocatalysis towards the direct electrochemistry of hemoglobin. Biosens Bioelectron 66:216–223. doi:10.1016/j.bios.2014.11.020

    Article  CAS  Google Scholar 

  5. Lin M, Pan D, Hu X, Han H, Li F (2015) Titanium carbide nanoparticles/ion-exchange polymer-based sensor for catalytic stripping determination of trace iron in coastal waters. Sensors Actuators B Chem 219:164–170. doi:10.1016/j.snb.2015.05.034

    Article  CAS  Google Scholar 

  6. Zhao R, Liu X, Zhang J, Zhu J, Wong DKY (2015) Enhancing direct electron transfer of glucose oxidase using a gold nanoparticle |titanate nanotube nanocomposite on a biosensor. Electrochim Acta 163:64–70. doi:10.1016/j.electacta.2015.02.098

    Article  CAS  Google Scholar 

  7. Yu YY, Guo CX, Yong YC, Li CM, Song H (2015) Nitrogen doped carbon nanoparticles enhanced extracellular electron transfer for high-performance microbial fuel cells anode. Chemosphere 140:26–33. doi:10.1016/j.chemosphere.2014.09.070

    Article  CAS  Google Scholar 

  8. Xu Q, Shen Y, Tang J, Xue MH, Jiang L, Hu X (2015) Electrochemical method assisted immobilization and orientation of myoglobin into biomimetic brij 56 film and its direct electrochemistry study. ACS Appl Mater Interfaces 7(21):11286–11293. doi:10.1021/acsami.5b01492

    Article  CAS  Google Scholar 

  9. Guitian Oliveira N, Sirgado T, Reis L, Pinto LFV, da Silva CL, Ferreira FC, Rodrigues A (2014) In vitro assessment of three dimensional dense chitosan-based structures to be used as bioabsorbable implants. J Mech Behav Biomed 40:413–425. doi:10.1016/j.jmbbm.2014.09.014

    Article  CAS  Google Scholar 

  10. Yang JL, Huang YJ, Gao CM, Liu MZ, Zhang XJ (2014) Fabrication and evaluation of the novel reduction-sensitive starch nanoparticles for controlled drug release. Colloids Surf, B 115:368–376. doi:10.1016/j.colsurfb.2013.12.007

    Article  CAS  Google Scholar 

  11. Zhang JJ, Ma XX, Fan DD, Zhu CH, Deng JJ, Hui JF, Ma P (2014) Synthesis and characterization of hyaluronic acid/human-like collagen hydrogels. Mat Sci Eng C-Mater 43:547–554. doi:10.1016/j.msec.2014.07.058

    Article  CAS  Google Scholar 

  12. Gu F, Li B-Z, Xia H, Adhikari B, Gao Q (2015) Preparation of starch nanospheres through hydrophobic modification followed by initial water dialysis. Carbohyd Polym 115:605–612. doi:10.1016/j.carbpol.2014.08.102

    Article  CAS  Google Scholar 

  13. Subramanian SB, Francis AP, Devasena T (2014) Chitosan-starch nanocomposite particles as a drug carrier for the delivery of bis-desmethoxy curcumin analog. Carbohyd Polym 114:170–178. doi:10.1016/j.carbpol.2014.07.053

    Article  CAS  Google Scholar 

  14. Mauricio MR, da Costa PG, Haraguchi SK, Guilherme MR, Muniz EC, Rubira AF (2015) Synthesis of a microhydrogel composite from cellulose nanowhiskers and starch for drug delivery. Carbohyd Polym 115:715–722. doi:10.1016/j.carbpol.2014.07.063

    Article  CAS  Google Scholar 

  15. Collins RE (1961) Transport of gases through hemoglobin solution. Science (New York, NY) 133(3464):1593–1594. doi:10.1126/science.133.3464.1593

    Article  CAS  Google Scholar 

  16. Bossi D, Giardina B (1996) Chapter 1 Red cell physiology. Mol Aspects Med 17(2):117–128. doi:10.1016/0098-2997(96)88343-9

    Article  CAS  Google Scholar 

  17. Sharan M, Popel AS (2002) A compartmental model for oxygen transport in brain microcirculation in the presence of blood substitutes. J Theor Biol 216(4):479–500. doi:10.1006/jtbi.2002.3001

    Article  CAS  Google Scholar 

  18. Yang R, Gao G, Liu T, Liu S, Li G (2007) Enhanced ability of hemoglobin to carry oxygen by salidroside. Electrochem Commun 9(1):94–96. doi:10.1016/j.elecom.2006.08.042

    Article  CAS  Google Scholar 

  19. Wang XD, Wolfbeis OS (2014) Optical methods for sensing and imaging oxygen: materials, spectroscopies and applications. Chem Soc Rev 43(10):3666–3761. doi:10.1039/c4cs00039k

    Article  CAS  Google Scholar 

  20. Pan ZQ, Xie J, Liu XJ, Bao N, Gu HY (2014) Direct electron transfer from native human hemoglobin using a glassy carbon electrode modified with chitosan and a poly(N, N-diethylacrylamide) hydrogel containing red blood cells. Microchim Acta 181(11–12):1215–1221. doi:10.1007/s00604-014-1222-9

    Article  CAS  Google Scholar 

  21. Wang YH, Guo JW, Gu HY (2010) A novel nano-sized bionic function interface for enhancing the ability of red blood cells to carry oxygen. Microchim Acta 171(1–2):179–186. doi:10.1007/s00604-010-0392-3

    Article  CAS  Google Scholar 

  22. Jia Y, Cui Y, Fei J, Du M, Dai L, Li J, Yang Y (2012) Construction and Evaluation of Hemoglobin-Based Capsules as Blood Substitutes. Adv Funct Mater 22(7):1446–1453. doi:10.1002/adfm.201102737

    Article  CAS  Google Scholar 

  23. Ji N, Li XJ, Qiu C, Li GH, Sun QJ, Xiong L (2015) Effects of heat moisture treatment on the physicochemical properties of starch nanoparticles. Carbohydr Polym 117:605–609. doi:10.1016/j.carbpol.2014.10.005

    Article  CAS  Google Scholar 

  24. Gao W, Sha B, Zou W, Liang X, Meng X, Xu H, Tang J, Wu D, Xu L, Zhang H (2011) Cationic amylose-encapsulated bovine hemoglobin as a nanosized oxygen carrier. Biomaterials 32(35):9425–9433. doi:10.1016/j.biomaterials.2011.08.046

    Article  CAS  Google Scholar 

  25. Sun J, Huang Y, Shi Q, Chen X, Jing X (2009) Oxygen carrier based on hemoglobin/poly(L-lysine)-block-poly(L-phenylalanine) vesicles. Langmuir 25(24):13726–13729. doi:10.1021/la901194k

    Article  CAS  Google Scholar 

  26. Dobrunz D, Toma AC, Tanner P, Pfohl T, Palivan CG (2012) Polymer nanoreactors with dual functionality: simultaneous detoxification of peroxynitrite and oxygen transport. Langmuir 28(45):15889–15899. doi:10.1021/la302724m

    Article  CAS  Google Scholar 

  27. Laviron E (1979) General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J Electroanal Chem Interfacial Electrochem 101(1):19–28. doi:10.1016/S0022-0728(79)80075-3

    Article  CAS  Google Scholar 

  28. Gu HY, Yu AM, Chen HY (2001) Direct electron transfer and characterization of hemoglobin immobilized on a Au colloid–cysteamine-modified gold electrode. J Electroanal Chem 516(1–2):119–126. doi:10.1016/S0022-0728(01)00669-6

    Article  CAS  Google Scholar 

  29. Ren L, Dong J, Cheng X, Xu J, Hu P (2013) Hydrogen peroxide biosensor based on direct electrochemistry of hemoglobin immobilized on gold nanoparticles in a hierarchically porous zeolite. Microchim Acta 180(13–14):1333–1340. doi:10.1007/s00604-013-1064-x

    Article  CAS  Google Scholar 

  30. Baghayeri M, Zare EN, Lakouraj MM (2014) Monitoring of hydrogen peroxide using a glassy carbon electrode modified with hemoglobin and a polypyrrole-based nanocomposite. Microchim Acta 182(3–4):771–779. doi:10.1007/s00604-014-1387-2

    Google Scholar 

  31. Pita M, Gutierrez-Sanchez C, Toscano MD, Shleev S, De Lacey AL (2013) Oxygen biosensor based on bilirubin oxidase immobilized on a nanostructured gold electrode. Bioelectrochemistry 94:69–74. doi:10.1016/j.bioelechem.2013.07.001

    Article  CAS  Google Scholar 

  32. Haghighi B, Bozorgzadeh S (2011) Enhanced electrochemiluminescence from luminol at multi-walled carbon nanotubes decorated with palladium nanoparticles: a novel route for the fabrication of an oxygen sensor and a glucose biosensor. Anal Chim Acta 697(1–2):90–97. doi:10.1016/j.aca.2011.04.032

    Article  CAS  Google Scholar 

  33. Zheng R-J, Fang Y-M, Qin S-F, Song J, Wu A-H, Sun J-J (2011) A dissolved oxygen sensor based on hot electron induced cathodic electrochemiluminescence at a disposable CdS modified screen-printed carbon electrode. Sensors Actuators B Chem 157(2):488–493. doi:10.1016/j.snb.2011.05.005

    Article  CAS  Google Scholar 

  34. Lin Z, Liu Y, Chen G (2008) TiO2/Nafion film based electrochemiluminescence for detection of dissolved oxygen. Electrochem Commun 10(10):1629–1632. doi:10.1016/j.elecom.2008.08.015

    Article  CAS  Google Scholar 

  35. Luo W, Abbas ME, Zhu L, Zhou W, Li K, Tang H, Liu S, Li W (2009) A simple fluorescent probe for the determination of dissolved oxygen based on the catalytic activation of oxygen by iron(II) chelates. Anal Chim Acta 640(1–2):63–67. doi:10.1016/j.aca.2009.03.024

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Grant numbers: 21475070; 21175075), the Natural Science Foundation of Jiangsu Province (Grant number: BK2011047, BK2012651), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), and the 226 Scientific Research Project of Nantong City.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong He or Haiying Gu.

Additional information

Xiaojun Liu and Zhongqin Pan contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 320 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Pan, Z., Dong, Z. et al. Amperometric oxygen biosensor based on hemoglobin encapsulated in nanosized grafted starch particles. Microchim Acta 183, 353–359 (2016). https://doi.org/10.1007/s00604-015-1655-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-015-1655-9

Keywords

Navigation