Skip to main content

Advertisement

Log in

Oriented immobilization of proteins on solid supports for use in biosensors and biochips: a review

  • Review Article
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Immobilization of proteins on a solid support is critical with respect to the fabrication and performance of biosensors and biochips. Protein attachment with a preferable orientation can effectively avoid its denaturation and keeps its active sites fully exposed to solution, thus maximally preserving the bioaffinity or bioactivity. This review (with 140 refs.) summarises the recent advances in oriented immobilization of proteins with a particular focus on antibodies and enzymes. Following an introduction that describes reasons for oriented immobilization on (nano)surfaces, we summarize (a) methods for (bio)chemical affinity-mediated oriented immobilization (with sections on immunoglobulin G (IgG)-binding protein as the capture ligand, DNA-directed immobilization, aptamer- and peptide-mediated immobilization, affinity ligand and fusion tag-mediated immobilization, material-binding peptide-assisted immobilization); (b) methods for covalent oriented immobilization (with sections on immobilization via cysteine residues or cysteine tags, via carbohydrate moieties; via enzyme fusion or enzymatic catalysis, and via nucleotide binding sites of antibodies); (c) methods based on molecular imprinting techniques; (d) methods for characterization of oriented immobilized proteins; and then make conclusions and give perspectives.

This review summarises recent advances in oriented immobilization of proteins based on strategies via bio−/chemical affinity, covalent bonding, and molecular imprinting techniques. Advantages and disadvantages of each approach are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Oh SJ, Hong BJ, Choi KY, Park JW (2006) Surface modification for DNA and protein microarrays. OMICS 10(3):327–343

    Article  CAS  Google Scholar 

  2. Rusmini F, Zhong Z, Feijen J (2007) Protein immobilization strategies for protein biochips. Biomacromolecules 8(6):1775–1789

    Article  CAS  Google Scholar 

  3. Barbosa O, Torres R, Ortiz C, Berenguer-Murcia A, Rodrigues RC, Fernandez-Lafuente R (2013) Heterofunctional supports in enzyme immobilization: from traditional immobilization protocols to opportunities in tuning enzyme properties. Biomacromolecules 14(8):2433–2462

    Article  CAS  Google Scholar 

  4. Kong F, Hu YF (2012) Biomolecule immobilization techniques for bioactive paper fabrication. Anal Bioanal Chem 403(1):7–13

    Article  CAS  Google Scholar 

  5. Samanta D, Sarkar A (2011) Immobilization of bio-macromolecules on self-assembled monolayers: methods and sensor applications. Chem Soc Rev 40(5):2567–2592

    Article  CAS  Google Scholar 

  6. Camarero JA (2008) Recent developments in the site-specific immobilization of proteins onto solid supports. Biopolymers 90(3):450–458

    Article  CAS  Google Scholar 

  7. Seong SY, Choi CY (2003) Current status of protein chip development in terms of fabrication and application. Proteomics 3(11):2176–2189

    Article  CAS  Google Scholar 

  8. Elshafey R, Tavares AC, Siaj M, Zourob M (2013) Electrochemical impedance immunosensor based on gold nanoparticles-protein G for the detection of cancer marker epidermal growth factor receptor in human plasma and brain tissue. Biosens Bioelectron 50:143–149

    Article  CAS  Google Scholar 

  9. Mu X, Tong Z, Huang Q, Liu B, Liu Z, Hao L, Zhang J, Gao C, Wang F (2015) Nano-magnetic immunosensor based on staphylococcus protein a and the amplification effect of HRP-conjugated phage antibody. Sensors 15(2):3896–3910

    Article  CAS  Google Scholar 

  10. Qi H, Wang C, Cheng N (2010) Label-free electrochemical impedance spectroscopy biosensor for the determination of human immunoglobulin G. Microchim Acta 170(1–2):33–38

    Article  CAS  Google Scholar 

  11. Zhang J, Sun Y, Wu Q, Zhang H, Bai Y, Song DQ (2013) Protein a modified Au-graphene oxide composite as an enhanced sensing platform for SPR-based immunoassay. Analyst 138(23):7175–7181

    Article  CAS  Google Scholar 

  12. Makaraviciute A, Ramanaviciene A (2013) Site-directed antibody immobilization techniques for immunosensors. Biosens Bioelectron 50:460–471

    Article  CAS  Google Scholar 

  13. Le Brun AP, Holt SA, Shah DSH, Majkrzak CF, Lakey JH (2011) The structural orientation of antibody layers bound to engineered biosensor surfaces. Biomaterials 32(12):3303–3311

    Article  CAS  Google Scholar 

  14. de Juan-Franco E, Caruz A, Pedrajas JR, Lechuga LM (2013) Site-directed antibody immobilization using a protein a-gold binding domain fusion protein for enhanced SPR immunosensing. Analyst 138(7):2023–2031

    Article  CAS  Google Scholar 

  15. Choi HW, Sakata Y, Ooya T, Takeuchi T (2015) Reflectometric interference spectroscopy-based immunosensing using immobilized antibody via his-tagged recombinant protein a. J Biosci Bioeng 119(2):195–199

    Article  CAS  Google Scholar 

  16. Lee J, Chang JH (2014) Facile and high-efficient immobilization of histidine-tagged multimeric protein G on magnetic nanoparticles. Nanoscale Res Lett 9(1):664

    Article  CAS  Google Scholar 

  17. Jung Y, Lee JM, Jung H, Chung BH (2007) Self-directed and self-oriented immobilization of antibody by protein G-DNA conjugate. Anal Chem 79(17):6534–6541

    Article  CAS  Google Scholar 

  18. Iijima M, Kadoya H, Hatahira S, Hiramatsu S, Jung G, Martin A, Quinn J, Jung J, Jeong S-Y, Choi EK, Arakawa T, Hinako F, Kusunoki M, Yoshimoto N, Niimi T, Tanizawa K, Si K (2011) Nanocapsules incorporating IgG Fc-binding domain derived from Staphylococcus aureus protein a for displaying IgGs on immunosensor chips. Biomaterials 32(6):1455–1464

    Article  CAS  Google Scholar 

  19. Tang J-B, Sun X-F, Yang H-M, Zhang B-G, Li Z-J, Lin Z-J, Gao Z-Q (2013) Well-oriented ZZ-PS-tag with high Fc-binding onto polystyrene surface for controlled immobilization of capture antibodies. Anal Chim Acta 776:74–78

    Article  CAS  Google Scholar 

  20. Yang HM, Bao RM, Cheng YZ, Tang J-B (2015) Site-specific covalent attachment of an engineered Z-domain onto a solid matrix: An efficient platform for 3D IgG immobilization. Anal Chim Acta 872:1–6

  21. Bano F, Fruk L, Sanavio B, Glettenberg M, Casalls L, Niemeyer CM, Scoles G (2009) Toward multiprotein nanoarrays using nanografting and DNA directed immobilization of proteins. Nano Lett 9(7):2614–2618

    Article  CAS  Google Scholar 

  22. Arrabito G, Reisewitz S, Dehmelt L, Bastiaens PI, Pignataro B, Schroeder H, Niemeyer CM (2013) Biochips for cell biology by combined dip-pen nanolithography and DNA-directed protein immobilization. Small 9(24):4243–4249

    Article  CAS  Google Scholar 

  23. Shen WQ, Zhong H, Neff D, Norton ML (2009) NTA directed protein nanopatterning on DNA origami nanoconstructs. J Am Chem Soc 131(19):6660–6661

    Article  CAS  Google Scholar 

  24. Goodman RP, Erben CM, Malo J, Ho WM, McKee ML, Kapanidis AN, Turberfield AJ (2009) A facile method for reversibly linking a recombinant protein to DNA. Chembiochem 10(9):1551–1557

    Article  CAS  Google Scholar 

  25. Kazane SA, Sok D, Cho EH, Uson ML, Kuhn P, Schultz PG, Smider VV (2012) Site-specific DNA-antibody conjugates for specific and sensitive immuno-PCR. Proc Natl Acad Sci U S A 109(10):3731–3736

    Article  CAS  Google Scholar 

  26. Bauer DM, Ahmed I, Vigovskaya A, Fruk L (2013) Clickable tyrosine binding bifunctional linkers for preparation of DNA-protein conjugates. Bioconjug Chem 24(6):1094–1101

    Article  CAS  Google Scholar 

  27. Khatwani SL, Kang JS, Mullen DG, Hast MA, Beese LS, Distefano MD, Taton TA (2012) Covalent protein-oligonucleotide conjugates by copper-free click reaction. Bioorg Med Chem 20(14):4532–4539

    Article  CAS  Google Scholar 

  28. Lovrinovic M, Niemeyer CM (2007) Microtiter plate-based screening for the optimization of DNA-protein conjugate synthesis by means of expressed protein ligation. Chembiochem 8(1):61–67

    Article  CAS  Google Scholar 

  29. Niemeyer CM (2002) The developments of semisynthetic DNA-protein conjugates. Trends Biotechnol 20(9):395–401

    Article  CAS  Google Scholar 

  30. Niemeyer CM (2010) Semisynthetic DNA-protein conjugates for biosensing and nanofabrication. Angew Chem Int Ed 49(7):1200–1216

    Article  CAS  Google Scholar 

  31. Meyer R, Giselbrecht S, Rapp BE, Hirtz M, Niemeyer CM (2014) Advances in DNA-directed immobilization. Curr Opin Chem Biol 18:8–15

    Article  CAS  Google Scholar 

  32. Yang ZG, Kasprzyk-Hordern B, Goggins S, Frost CG, Estrela P (2015) A novel immobilization strategy for electrochemical detection of cancer biomarkers: DNA-directed immobilization of aptamer sensors for sensitive detection of prostate specific antigens. Analyst 140(8):2628–2633

    Article  CAS  Google Scholar 

  33. Morvan F, Chevolot Y, Zhang J, Meyer A, Vidal S, Praly J-P, Vasseur J-J, Souteyrand E (2012) Glycoarray by DNA-Directed Immobilization, in Carbohydrate Microarrays: Methods and Protocols. Y. Chevolot, Editor, pp. 195–219

    Book  Google Scholar 

  34. Tort N, Salvador JP, Avino A, Eritja R, Comelles J, Martinez E, Samitier J, Marco MP (2012) Synthesis of steroid-oligonucleotide conjugates for a DNA site-encoded SPR immunosensor. Bioconjug Chem 23(11):2183–2191

    Article  CAS  Google Scholar 

  35. Boozer C, Ladd J, Chen SF, Jiang ST (2006) DNA-directed protein immobilization for simultaneous detection of multiple analytes by surface Plasmon resonance biosensor. Anal Chem 78(5):1515–1519

    Article  CAS  Google Scholar 

  36. Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346(6287):818–822

    Article  CAS  Google Scholar 

  37. Ellington AD, Szostak JW (1992) Selection invitro of single-stranded-DNA molecules that fold into specific ligand-binding structures. Nature 355(6363):850–852

    Article  CAS  Google Scholar 

  38. Wu J, Zhu Y, Xue F, Mei Z, Yao L, Wang X, Zheng L, Liu J, Liu G, Peng C, Chen W (2014) Recent trends in SELEX technique and its application to food safety monitoring. Microchim Acta 181(5–6):479–491

    Article  CAS  Google Scholar 

  39. Blind M, Blank M (2015) Aptamer selection technology and recent advances. Mol Ther-Nucl Acids 4:e223

    Article  Google Scholar 

  40. Das M, Duan W, Sahoo SK (2015) Multifunctional nanoparticle-EpCAM aptamer bioconjugates: A paradigm for targeted drug delivery and imaging in cancer therapy. Nanomed-Nanotechnol Biol Med 11(2): 379–389.

  41. Deng K, Hou Z, Li X, Li C, Zhang Y, Deng X, Cheng Z, Lin J (2015) Aptamer-Mediated Up-conversion Core/MOF Shell Nanocomposites for Targeted Drug Delivery and Cell Imaging. Sci Rep 5:7851

    Article  CAS  Google Scholar 

  42. Shen B, Li J, Cheng W, Yan Y, Tang R, Li Y, Ju H, Ding S (2015) Electrochemical aptasensor for highly sensitive determination of cocaine using a supramolecular aptamer and rolling circle amplification. Microchim Acta 182(1–2):361–367

    Article  CAS  Google Scholar 

  43. Hai H, Yang F, Li J (2014) Highly sensitive electrochemiluminescence "turn-on" aptamer sensor for lead(II) ion based on the formation of a G-quadruplex on a graphene and gold nanoparticles modified electrode. Microchim Acta 181(9–10):893–901

    Article  CAS  Google Scholar 

  44. Yuan J, Yu Y, Li C, Ma X, Xia Y, Chen J, Wang Z (2014) Visual detection and microplate assay for Staphylococcus aureus based on aptamer recognition coupled to tyramine signal amplification. Microchim Acta 181(3–4):321–327

    Article  CAS  Google Scholar 

  45. Lei PH, Tang H, Ding SH, Ding XJ, Zhu D, Shen B, Cheng Q, Yan YR (2015) Determination of the invA gene of salmonella using surface Plasmon resonance along with streptavidin aptamer amplification. Microchim Acta 182(1–2):289–296

    Article  CAS  Google Scholar 

  46. Bruno JG (2015) Predicting the uncertain future of aptamer-based diagnostics and therapeutics. Molecules 20(4):6866–6887

    Article  CAS  Google Scholar 

  47. Zhou W, Huang P-JJ, Ding J, Liu J (2014) Aptamer-based biosensors for biomedical diagnostics. Analyst 139(11):2627–2640

    Article  CAS  Google Scholar 

  48. Zhang Y, Xing S-G, Wang Z, Kang Q-H, Ling Y, Yao M-Y, He Y-P, Jin Y, Chu X-G (2015) Recent research of aptamer in target drug delivery. Prog Biochem Biophy 42(3):236–243

    CAS  Google Scholar 

  49. Tang L, Tong R, Coyle VJ, Yin Q, Pondenis H, Borst LB, Cheng J, Fan TM (2015) Targeting tumor vasculature with aptamer-functionalized doxorubicin - polylactide nanoconjugates for enhanced cancer therapy. ACS Nano 9(5):5072–5081

    Article  CAS  Google Scholar 

  50. Liu Y, Lin CX, Li HY, Yan H (2005) Protein nanoarrays - aptamer-directed self-assembly of protein arrays on a DNA nanostructure. Angew Chem Int Ed 44(28):4333–4338

    Article  CAS  Google Scholar 

  51. Chumphukam O, Le TT, Cass AEG (2014) High efficiency acetylcholinesterase immobilization on DNA aptamer modified surfaces. Molecules 19(4):4986–4996

    Article  CAS  Google Scholar 

  52. Fu J, Reinhold J, Woodbury NW (2011) Peptide-modified surfaces for enzyme immobilization. PLoS One 6(4):e18692

    Article  CAS  Google Scholar 

  53. Jung Y, Kang HJ, Lee JM, Jung SO, Yun WS, Chung SJ, Chung BH (2008) Controlled antibody immobilization onto immunoanalytical platforms by synthetic peptide. Anal Biochem 374(1):99–105

    Article  CAS  Google Scholar 

  54. Tsai C-W, Jheng S-L, Chen W-Y, Ruaan R-C (2014) Strategy of Fc-recognizable peptide ligand design for oriented immobilization of antibody. Anal Chem 86(6):2931–2938

    Article  CAS  Google Scholar 

  55. Zhang Y, Islam N, Carbonell RG, Rojas OJ (2013) Specificity and regenerability of short peptide ligands supported on polymer layers for immunoglobulin G binding and detection. ACS Appl Mater Interfaces 5(16):8030–8037

    Article  CAS  Google Scholar 

  56. Lata S, Piehler J (2005) Stable and functional immobilization of histidine-tagged proteins via multivalent chelator headgroups on a molecular poly(ethylene glycol) brush. Anal Chem 77(4):1096–1105

    Article  CAS  Google Scholar 

  57. Bhagawati M, Lata S, Tampe R, Piehler J (2010) Native laser lithography of his-tagged proteins by uncaging of multivalent chelators. J Am Chem Soc 132(17):5932–5933

    Article  CAS  Google Scholar 

  58. Ofir K, Berdichevsky Y, Benhar I, Azriel-Rosenfeld R, Larned R, Barak Y, Bayer EA, Morag E (2005) Versatile protein microarray based on carbohydrate-binding modules. Proteomics 5(7):1806–1814

    Article  CAS  Google Scholar 

  59. Wu JJ, Zhou LL, Zhang HJ, Guo J, Mei X, Zhang C, Yuan JY, Xing XH (2014) Direct affinity immobilization of recombinant heparinase I fused to maltose binding protein on maltose-coated magnetic nanoparticles. Biochem Eng J 90:170–177

    Article  CAS  Google Scholar 

  60. Zhong M, Fang J, Wei Y (2010) Site specific and reversible protein immobilization facilitated by a DNA binding fusion tag. Bioconjug Chem 21(7):1177–1182

    Article  CAS  Google Scholar 

  61. Zhou Y, Guo T, Tang G, Wu H, Wong N-K, Pan Z (2014) Site-selective protein immobilization by covalent modification of GST fusion proteins. Bioconjug Chem 25(11):1911–1915

    Article  CAS  Google Scholar 

  62. Ericsson EM, Enander K, Bui L, Lundstrom I, Konradsson P, Liedberg B (2013) Site-specific and covalent attachment of his-tagged proteins by chelation assisted photoimmobilization: a strategy for microarraying of protein ligands. Langmuir 29(37):11687–11694

    Article  CAS  Google Scholar 

  63. Petersson L, Stade LW, Brofelth M, Gartner S, Fors E, Sandgren M, Vallkil J, Olsson N, Larsen KL, Borrebaeck CAK, Duroux L, Wingren C (2014) Molecular design of recombinant scFv antibodies for site-specific photocoupling to beta-cyclodextrin in solution and onto solid support. BBA-Proteins Proteom 1844(12):2164–2173

    Article  CAS  Google Scholar 

  64. Jensen RL, Stade LW, Wimmer R, Stensballe A, Duroux M, Larsen KL, Wingren C, Duroux L (2010) Direct site-directed photocoupling of proteins onto surfaces coated with beta-cyclodextrins. Langmuir 26(13):11597–11604

    Article  CAS  Google Scholar 

  65. Kumada Y (2014) Site-specific immobilization of recombinant antibody fragments through material-binding peptides for the sensitive detection of antigens in enzyme immunoassays. BBA-Proteins Proteom 1844(11):1960–1969

    Article  CAS  Google Scholar 

  66. Ikeda T, K-i N, Hirota R, Kuroda A (2010) Single-step affinity purification of recombinant proteins using the silica-binding Si-tag as a fusion partner. Protein Expr Purif 71(1):91–95

    Article  CAS  Google Scholar 

  67. Islam T, Manuel Aguilar-Yanez J, Simental-Martinez J, Ivan Ortiz-Alcaraz C, Rito-Palomares M, Fernandez-Lahore M (2014) A novel strategy for the purification of a recombinant protein using ceramic fluorapatite-binding peptides as affinity tags. J Chromatogr A 1339:26–33

    Article  CAS  Google Scholar 

  68. Fuchs SM, Raines RT (2005) Polyarginine as a multifunctional fusion tag. Protein Sci 14(6):1538–1544

    Article  CAS  Google Scholar 

  69. Taniguchi K, Nomura K, Hata Y, Nishimura T, Ksami Y, Kuroda A (2007) The Si-tag for immobilizing proteins on a silica surface. Biotechnol Bioeng 96(6):1023–1029

    Article  CAS  Google Scholar 

  70. Ikeda T, Motomura K, Agou Y, Ishida T, Hirota R, Kuroda A (2011) The silica-binding Si-tag functions as an affinity tag even under denaturing conditions. Protein Expr Purif 77(2):173–177

    Article  CAS  Google Scholar 

  71. Palafox-Hernandez JP, Tang Z, Hughes ZE, Li Y, Swihart MT, Prasad PN, Walsh TR, Knecht MR (2014) Comparative Study of Materials-Binding Peptide Interactions with Gold and Silver Surfaces and Nanostructures: A Thermodynamic Basis for Biological Selectivity of Inorganic Materials. Chem Mater 26(17):4960–4969

    Article  CAS  Google Scholar 

  72. Hashimoto K, Yoshinari M, Matsuzaka K, Shiba K, Inoue T (2011) Identification of peptide motif that binds to the surface of zirconia. Dent Mater J 30(6):935–940

    Article  CAS  Google Scholar 

  73. Sano KI, Shiba K (2003) A hexapeptide motif that electrostatically binds to the surface of titanium. J Am Chem Soc 125(47):14234–14235

    Article  CAS  Google Scholar 

  74. Kumada Y, Ootsuka T, Asada M, Yoshizuka S, Chiyama M, Sakane M, Fida HMD, Sawada K, Okumura K, Kishimoto M (2014) Identification and characterization of peptide fragments for the direct and site-specific immobilization of functional proteins onto the surface of silicon nitride. J Biotechnol 184:103–110

    Article  CAS  Google Scholar 

  75. Feng B, Dai Y, Wang L, Tao N, Huang S, Zeng H (2009) A novel affinity ligand for polystyrene surface from a phage display random library and its application in anti-HIV-1 ELISA system. Biologicals 37(1):48–54

    Article  CAS  Google Scholar 

  76. Kumada Y, Katoh S, Imartaka H, Imamura K, Nakanishi K (2007) Development of a one-step ELISA method using an affinity peptide tag specific to a hydrophilic polystyrene surface. J Biotechnol 127(2):288–299

    Article  CAS  Google Scholar 

  77. Kumada Y, Hamasaki K, Shiritani Y, Nakagawa A, Kuroki D, Ohse T, Choi DH, Katakura Y, Kishimoto M (2009) Direct immobilization of functional single-chain variable fragment antibodies (scFvs) onto a polystyrene plate by genetic fusion of a polystyrene-binding peptide (PS-tag). Anal Bioanal Chem 395(3):759–765

    Article  CAS  Google Scholar 

  78. Kumada Y, Hamasaki K, Shiritani Y, Ohse T, Kishimoto M (2009) Efficient immobilization of a ligand antibody with high antigen-binding activity by use of a polystyrene-binding peptide and an intelligent microtiter plate. J Biotechnol 142(2):135–141

    Article  CAS  Google Scholar 

  79. Kumada Y, Kuroki D, Yasui H, Ohse T, Kishimoto M (2010) Characterization of polystyrene-binding peptides (PS-tags) for site-specific immobilization of proteins. J Biosci Bioeng 109(6):583–587

    Article  CAS  Google Scholar 

  80. Matsuno H, Sekine J, Yajima H, Serizawa T (2008) Biological selection of peptides for poly(L-lactide) substrates. Langmuir 24(13):6399–6403

    Article  CAS  Google Scholar 

  81. Kumada Y, Murata S, Ishikawa Y, Nakatsuka K, Kishimoto M (2012) Screening of PC and PMMA-binding peptides for site-specific immobilization of proteins. J Biotechnol 160(3–4):222–228

    Article  CAS  Google Scholar 

  82. Serizawa T, Sawada T, Matsuno H (2007) Highly specific affinities of short peptides against synthetic polymers. Langmuir 23(22):11127–11133

    Article  CAS  Google Scholar 

  83. Hermanson GT, creating specific functional groups, in Bioconjugate Techniques, G.T. Hermanson, Editor. 2008, Academic Press: New York. p. 87–88.

  84. Vikholm-Lundin I, Albers WM (2006) Site-directed immobilisation of antibody fragments for detection of C-reactive protein. Biosens Bioelectron 21(7):1141–1148

    Article  CAS  Google Scholar 

  85. Kausaite-Minkstimiene A, Ramanaviciene A, Kirlyte J, Ramanavicius A (2010) Comparative study of random and oriented antibody immobilization techniques on the binding capacity of immunosensor. Anal Chem 82(15):6401–6408

    Article  CAS  Google Scholar 

  86. Lee W, Oh BK, Lee WH, Choi JW (2005) Immobilization of antibody fragment for immunosensor application based on surface Plasmon resonance. Colloid Surface B 40(3–4):143–148

    Article  CAS  Google Scholar 

  87. Bonroy K, Frederix F, Reekmans G, Dewolf E, De Palma R, Borghs G, Declerck P, Goddeeris B (2006) Comparison of random and oriented immobilisation of antibody fragments on mixed self-assembled monolayers. J Immunol Methods 312(1–2):167–181

    Article  CAS  Google Scholar 

  88. Wasserberg D, Nicosia C, Tromp EE, Subramaniam V, Huskens J, Jonkheijm P (2013) Oriented protein immobilization using covalent and noncovalent chemistry on a thiol-reactive self-reporting surface. J Am Chem Soc 135(8):3104–3111

    Article  CAS  Google Scholar 

  89. Liu F, Wang L, Wang H, Yuan L, Li J, Brash JL, Chen H (2015) Modulating the activity of protein conjugated to gold nanoparticles by site-directed orientation and surface density of bound protein. ACS Appl Mater Interfaces 7(6):3717–3724

    CAS  Google Scholar 

  90. Hortigueela MJ, Wall JG (2013) Improved detection of domoic acid using covalently immobilised antibody fragments. Mar Drugs 11(3):881–895

    Article  CAS  Google Scholar 

  91. Ichihara T, Akada JK, Kamei S, Ohshiro S, Sato D, Fujimoto M, Kuramitsu Y, Nakamura K (2006) A novel approach of protein immobilization for protein chips using an oligo-cysteine tag. J Proteome Res 5(9):2144–2151

    Article  CAS  Google Scholar 

  92. Gering JP, Quaroni L, Chumanov G (2002) Immobilization of antibodies on glass surfaces through sugar residues. J Colloid Interf Sci 252(1):50–56

    Article  CAS  Google Scholar 

  93. Hu X, Hortiguela MJ, Robin S, Lin H, Li Y, Moran AP, Wang W, Wall JG (2013) Covalent and oriented immobilization of scFv antibody fragments via an engineered glycan moiety. Biomacromolecules 14(1):153–159

    Article  CAS  Google Scholar 

  94. Yeritsyan HE, Gasparyan VK (2012) Homogeneous immunoassay for human IgG using oriented hen egg IgY immobilized on gold sol nanoparticles. Microchim Acta 176(1–2):117–122

    Article  CAS  Google Scholar 

  95. Lacina K, Skladal P, James TD (2014) Boronic acids for sensing and other applications - a mini-review of papers published in 2013. Chem Cent J 8:60

    Article  CAS  Google Scholar 

  96. Wang X, Xia N, Liu L (2013) Boronic acid-based approach for separation and immobilization of glycoproteins and its application in sensing. Int J Mol Sci 14(10):20890–20912

    Article  CAS  Google Scholar 

  97. Mader HS, Wolfbeis OS (2008) Boronic acid based probes for microdetermination of saccharides and glycosylated biomolecules. Microchim Acta 162(1–2):1–34

    Article  CAS  Google Scholar 

  98. Adak AK, Li B-Y, Huang L-D, Lin T-W, Chang T-C, Hwang KC, Lin C-C (2014) Fabrication of antibody microarrays by light-induced covalent and oriented immobilization. ACS Appl Mater Interfaces 6(13):10452–10460

    Article  CAS  Google Scholar 

  99. Song HY, Hobley J, Su X, Zhou X (2014) End-on covalent antibody immobilization on dual polarization interferometry sensor chip for enhanced immuno-sensing. Plasmonics 9(4):851–858

    Article  CAS  Google Scholar 

  100. Moreno-Guzman M, Ojeda I, Villalonga R, Gonzalez-Cortes A, Yanez-Sedeno P, Pingarron JM (2012) Ultrasensitive detection of adrenocorticotropin hormone (ACTH) using disposable phenylboronic-modified electrochemical immunosensors. Biosens Bioelectron 35(1):82–86

    Article  CAS  Google Scholar 

  101. Ho J-aA, Hsu WL, Liao WC, Chiu JK, Chen ML, Chang HC, Li CC (2010) Ultrasensitive electrochemical detection of biotin using electrically addressable site-oriented antibody immobilization approach via aminophenyl boronic acid. Biosens Bioelectron 26(3):1021–1027

  102. Zhang X, Wu Y, Tu Y, Liu S (2008) A reusable electrochemical immunosensor for carcinoembryonic antigen via molecular recognition of glycoprotein antibody by phenylboronic acid self-assembly layer on gold. Analyst 133(4):485–492

    Article  CAS  Google Scholar 

  103. Chen ML, Adak AK, Yeh NC, Yang WB, Chuang YJ, Wong CH, Hwang KC, Hwu JRR, Hsieh SL, Lin CC (2008) Fabrication of an oriented Fc-fused lectin microarray through boronate formation. Angew Chem Int Ed 47(45):8627–8630

  104. Hu W, Liu Y, Chen T, Liu Y, Li CM (2015) Hybrid ZnO nanorod-polymer brush hierarchically nanostructured substrate for sensitive antibody microarrays. Adv Mater 27(1):181–185

    Article  CAS  Google Scholar 

  105. Liu Y, Guo CX, Hu W, Lu Z, Li CM (2011) Sensitive protein microarray synergistically amplified by polymer brush-enhanced immobilizations of both probe and reporter. J Colloid Interf Sci 360(2):593–599

    Article  CAS  Google Scholar 

  106. Liu Y, Li X, Bao S, Lu Z, Li Q, Li CM (2013) Plastic protein microarray to investigate the molecular pathways of magnetic nanoparticle-induced nanotoxicity. Nanotechnology 24(17):175501

    Article  CAS  Google Scholar 

  107. Liu Y, Wang W, Hu W, Lu Z, Zhou X, Li CM (2011) Highly sensitive poly glycidyl methacrylate-co-poly(ethylene glycol) methacrylate brush-based flow-through microarray immunoassay device. Biomed Microdevices 13(4):769–777

    Article  CAS  Google Scholar 

  108. Song L, Zhao J, Luan S, Ma J, Liu J, Xu X, Yin J (2013) Fabrication of a detection platform with boronic-acid-containing zwitterionic polymer brush. ACS Appl Mater Interfaces 5(24):13207–13215

    Article  CAS  Google Scholar 

  109. Liu Y, Zhang Y, Zhao Y, Yu J (2014) Phenylboronic acid polymer brush-enabled oriented and high density antibody immobilization for sensitive microarray immunoassay. Colloid Surface B 121:21–26

    Article  CAS  Google Scholar 

  110. Minarik A, Humenik M, Li S, Huang Y, Krausch G, Sprinzl M (2008) Ligand-directed immobilization of proteins through an esterase 2 fusion tag studied by atomic force microscopy. Chembiochem 9(1):124–130

    Article  CAS  Google Scholar 

  111. Chan L, Cross HF, She JK, Cavalli G, Martins HFP, Neylon C (2007) Covalent attachment of proteins to solid supports and surfaces via sortase-mediated ligation. PLoS One 2(11):e1164

    Article  CAS  Google Scholar 

  112. Clow F, Fraser JD, Proft T (2008) Immobilization of proteins to biacore sensor chips using Staphylococcus aureus sortase a. Biotechnol Lett 30(9):1603–1607

    Article  CAS  Google Scholar 

  113. Ito T, Sadamoto R, Naruchi K, Togame H, Takemoto H, Kondo H, Nishimura S-I (2010) Highly oriented recombinant glycosyltransferases: Site-specific immobilization of unstable membrane proteins by using staphylococcus aureus sortase A. Biochemistry 49(11):2604–2614

    Article  CAS  Google Scholar 

  114. Min K, Jung D, Jeon Y, Jeoung E, Kwon Y (2013) Site-specific and effective immobilization of proteins by Npu DnaE split-intein mediated protein trans-splicing reaction. Biochip J 7(3):288–294

    Article  CAS  Google Scholar 

  115. Alves NJ, Kiziltepe T, Bilgicer B (2012) Oriented surface immobilization of antibodies at the conserved nucleotide binding site for enhanced antigen detection. Langmuir 28(25):9640–9648

    Article  CAS  Google Scholar 

  116. Alves NJ, Mustafaoglu N, Bilgicer B (2014) Conjugation of a reactive thiol at the nucleotide binding site for site-specific antibody functionalization. Bioconjug Chem 25(7):1198–1202

    Article  CAS  Google Scholar 

  117. Alves NJ, Mustafaoglu N, Bilgicer B (2013) Oriented antibody immobilization by site-specific UV photocrosslinking of biotin at the conserved nucleotide binding site for enhanced antigen detection. Biosens Bioelectron 49:387–393

    Article  CAS  Google Scholar 

  118. Mustafaoglu N, Alves NJ, Bilgicer B (2015) Site-specific fab fragment biotinylation at the conserved nucleotide binding site for enhanced Ebola detection. Biotechnol Bioeng 112(7):1327–1334

    Article  CAS  Google Scholar 

  119. Alves NJ, Champion MM, Stefanick JF, Handlogten MW, Moustakas DT, Shi Y, Shaw BF, Navari RM, Kiziltepe T, Bilgicer B (2013) Selective photocrosslinking of functional ligands to antibodies via the conserved nucleotide binding site. Biomaterials 34(22):5700–5710

    Article  CAS  Google Scholar 

  120. Wulff G (2013) Fourty years of molecular imprinting in synthetic polymers: origin, features and perspectives. Microchim Acta 180(15–16):1359–1370

    Article  CAS  Google Scholar 

  121. Bereli N, Erturk G, Tumer MA, Say R, Denizli A (2013) Oriented immobilized anti-hIgG via Fc fragment-imprinted PHEMA cryogel for IgG purification. Biomed Chromatogr 27(5):599–607

    Article  CAS  Google Scholar 

  122. Corman ME, Armutcu C, Uzun L, Say R, Denizli A (2014) Self-oriented nanoparticles for site-selective immunoglobulin G recognition via epitope imprinting approach. Colloid Surface B 123:831–837

    Article  CAS  Google Scholar 

  123. Nishino H, Huang CS, Shea KJ (2006) Selective protein capture by epitope imprinting. Angew Chem Int Ed 45(15): 2392–2396.

  124. Bi X, Liu Z (2014) Facile preparation of glycoprotein-imprinted 96-well microplates for enzyme-linked immunosorbent assay by boronate affinity-based oriented surface imprinting. Anal Chem 86(1):959–966

    Article  CAS  Google Scholar 

  125. Zhou J, Gan N, Li T, Hu F, Li X, Wang L, Zheng L (2014) A cost-effective sandwich electrochemiluminescence immunosensor for ultrasensitive detection of HIV-1 antibody using magnetic molecularly imprinted polymers as capture probes. Biosens Bioelectron 54:199–206

    Article  CAS  Google Scholar 

  126. Bi X, Liu Z (2014) Enzyme activity assay of glycoprotein enzymes based on a boronate affinity molecularly imprinted 96-well microplate. Anal Chem 86(24):12382–12389

    Article  CAS  Google Scholar 

  127. Vasapollo G, Del Sole R, Mergola L, Lazzoi MR, Scardino A, Scorrano S, Mele G (2011) Molecularly Imprinted Polymers: Present and Future Prospective. Int J Mol Sci 12(9):5908–5945

    Article  CAS  Google Scholar 

  128. Chen H, Huang J, Lee J, Hwang S, Koh K (2010) Surface Plasmon resonance spectroscopic characterization of antibody orientation and activity on the calixarene monolayer. Sensor Actuat B-Chem 147(2): 548–553.

  129. Chen H, Liu F, Qi F, Koh K, Wang K (2014) Fabrication of calix 4 arene derivative monolayers to control orientation of antibody immobilization. Int J Mol Sci 15(4):5496–5507

    Article  CAS  Google Scholar 

  130. Kim E-S, Shim C-K, Lee JW, Park JW, Choi KY (2012) Synergistic effect of orientation and lateral spacing of protein G on an on-chip immunoassay. Analyst 137(10):2421–2430

    Article  CAS  Google Scholar 

  131. Feng B, Luo Y, Ge F, Wang L, Huang L, Dai Y (2011) Site-oriented immobilization of fusion antigen directed by an affinity ligand, and its validation in an immunoassay. Surf Interface Anal 43(10):1304–1310

    Article  CAS  Google Scholar 

  132. Cimatu K, Moore HJ, Lee TR, Baldelli S (2007) Sum frequency generation imaging of microcontact-printed monolayers derived from aliphatic dithiocarboxylic acids: Contrast based on terminal-group orientation. J Phys Chem C 111(32):11751–11755

    Article  CAS  Google Scholar 

  133. Khoi Tan N (2015) Orientation determination of interfacial bent alpha-helical structures using sum frequency generation vibrational spectroscopy. Chem Phys 447:15–21

    Article  CAS  Google Scholar 

  134. Roeters SJ, van Dijk CN, Torres-Knoop A, Backus EHG, Campen RK, Bonn M, Woutersen S (2013) Determining In Situ Protein Conformation and Orientation from the Amide-I Sum-Frequency Generation Spectrum: Theory and Experiment. J Phys Chem A 117(29):6311–6322

    Article  CAS  Google Scholar 

  135. Wang H-F, Velarde L, Gan W, Fu L (2015) Quantitative Sum-Frequency Generation Vibrational Spectroscopy of Molecular Surfaces and Interfaces: Lineshape, Polarization, and Orientation. Annu Rev Phys Chem, Vol 66 66: 189–216.

  136. Liu Y, Ogorzalek TL, Yang P, Schroeder MM, Marsh ENG, Chen Z (2013) Molecular orientation of enzymes attached to surfaces through defined chemical linkages at the solid–liquid interface. J Am Chem Soc 135(34):12660–12669

    Article  CAS  Google Scholar 

  137. Baio JE, Weidner T, Ramey D, Pruzinsky L, Castner DG (2013) Probing the orientation of electrostatically immobilized cytochrome C by time of flight secondary ion mass spectrometry and sum frequency generation spectroscopy. Biointerphases 8(1):18

    Article  CAS  Google Scholar 

  138. Kafle K, Xi X, Lee CM, Tittmann BR, Cosgrove DJ, Park YB, Kim SH (2014) Cellulose microfibril orientation in onion (Allium cepa L.) epidermis studied by atomic force microscopy (AFM) and vibrational sum frequency generation (SFG) spectroscopy. Cellulose 21(2):1075–1086

    Article  Google Scholar 

  139. Weidner T, Breen NF, Li K, Drobny GP, Castner DG (2010) Sum frequency generation and solid-state NMR study of the structure, orientation, and dynamics of polystyrene-adsorbed peptides. Proc Natl Acad Sci U S A 107(30):13288–13293

    Article  CAS  Google Scholar 

  140. Trilling AK, Beekwilder J, Zuilhof H (2013) Antibody orientation on biosensor surfaces: a minireview. Analyst 138(6):1619–1627

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is financially supported by the National Natural Science Foundation of China (Grant 21475106, 31200604), Natural Science Foundation of Chongqing (Grant cstc2012jjA10152), the Fundamental Research Funds for the Central Universities (XDJK2015B015), Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies (Grant cstc2011pt).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingshuai Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Yu, J. Oriented immobilization of proteins on solid supports for use in biosensors and biochips: a review. Microchim Acta 183, 1–19 (2016). https://doi.org/10.1007/s00604-015-1623-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-015-1623-4

Keywords

Navigation