Skip to main content

Advertisement

Log in

Gold nanoparticle based optical and electrochemical sensing of dopamine

  • Review Article
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

This review (with 110 refs.) gives an overview on the progress that has been made in the past few years on the use of gold nanoparticles (AuNPs) for use in sensors and analytical tools for the determination of dopamine (DA). Both AuNPs and their composites with other organic and inorganic materials including noble metals are treated. Following an overview on the clinical significance of DA, we discuss the various analytical methods that are (a) electrochemiluminescence (ECL); (b) surface enhanced Raman scattering (SERS); (c) colorimetric probing and visual detection; and (d) the large class of electrochemical sensors. Subsections cover sensors based on plain AuNPs, bimetallic NPs, AuNP-metal@metal oxide nanocomposites, AuNP nanocomposites with organic polymers, AuNP nanocomposites with carbon nanotubes or with graphene, and finally sensors based on ternary materials containing AuNPs. The review ends with a conclusion on current challenges of sensors for DA and an outlook on future trends.

We review the recent progress in sensing dopamine based on AuNPs and its nanocomposites including bimetallic nanoparticles, AuNPs-/metal oxide, AuNPs-polymer, AuNPs-carbon nanotubes, AuNPs-graphene and ternary materials using different types of sensing techniques such as electrochemiluminescence (ECL), colorimetric, surface enhanced Raman scattering (SERS) and electrochemical techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Pandikumar A, How GTS, See TP, Omar FS, Jayabal S, Kamali KZ, Yusoff N, Jamil A, Ramaraj R, John SA (2014) Graphene and its nanocomposite material based electrochemical sensor platform for dopamine. RSC Adv 4(108):63296–63323

    Article  CAS  Google Scholar 

  2. Sanghavi BJ, Wolfbeis OS, Hirsch T, Swami NS (2015) Nanomaterial-based electrochemical sensing of neurological drugs and neurotransmitters. Microchim Acta 182(1–2):1–41

    Article  CAS  Google Scholar 

  3. Jain PK, Lee KS, El-Sayed IH, El-Sayed MA (2006) Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine. J Phys Chem B 110(14):7238–7248. doi:10.1021/jp057170o

    Article  CAS  Google Scholar 

  4. Lyon LA, Pena DJ, Natan MJ (1999) Surface plasmon resonance of Au colloid-modified Au films: particle size dependence. J Phys Chem B 103(28):5826–5831

    Article  CAS  Google Scholar 

  5. Jongjinakool S, Palasak K, Bousod N, Teepoo S (2014) Gold nanoparticles-based colorimetric sensor for cysteine detection. Energy Procedia 56:10–18. doi:10.1016/j.egypro.2014.07.126

    Article  CAS  Google Scholar 

  6. Arvand M, Dehsaraei M (2013) A simple and efficient electrochemical sensor for folic acid determination in human blood plasma based on gold nanoparticles–modified carbon paste electrode. Mater Sci Eng C 33(6):3474–3480. doi:10.1016/j.msec.2013.04.037

    Article  CAS  Google Scholar 

  7. Liu T, Zhang L, Song H, Wang Z, Lv Y (2013) Sonochemical synthesis of Ag nanoclusters: electrogenerated chemiluminescence determination of dopamine. Luminescence 28(4):530–535

    Article  CAS  Google Scholar 

  8. Hsu M-S, Chen Y-L, Lee C-Y, Chiu H-T (2012) Gold nanostructures on flexible substrates as electrochemical dopamine sensors. ACS Appl Mater Interfaces 4(10):5570–5575

    Article  CAS  Google Scholar 

  9. Reddy S, Kumara Swamy BE, Jayadevappa H (2012) CuO nanoparticle sensor for the electrochemical determination of dopamine. Electrochim Acta 61:78–86. doi:10.1016/j.electacta.2011.11.091

    Article  CAS  Google Scholar 

  10. Gao P, Ma H, Yang J, Wu D, Zhang Y, Du B, Fan D, Wei Q (2015) Anatase TiO2 based photoelectrochemical sensor for the sensitive determination of dopamine under visible light irradiation. New J Chem 39(2):1483–1487. doi:10.1039/C4NJ01909A

    Article  CAS  Google Scholar 

  11. Wu Y, Cui L, Liu Y, Lv G, Pu T, Liu D, He X (2013) A dopamine sensor based on a methoxypolyethylene glycol polymer covalently modified glassy carbon electrode. Analyst 138(4):1204–1211

    Article  CAS  Google Scholar 

  12. Richter MM (2004) Electrochemiluminescence (ecl). Chem Rev 104(6):3003–3036

    Article  CAS  Google Scholar 

  13. Li F, Pang Y-Q, Lin X-Q, Cui H (2003) Determination of noradrenaline and dopamine in pharmaceutical injection samples by inhibition flow injection electrochemiluminescence of ruthenium complexes. Talanta 59(3):627–636. doi:10.1016/S0039-9140(02)00576-3

    Article  CAS  Google Scholar 

  14. Yu C, Yan J, Tu Y (2011) Electrochemiluminescent sensing of dopamine using CdTe quantum dots capped with thioglycolic acid and supported with carbon nanotubes. Microchim Acta 175(3–4):347–354

    Article  CAS  Google Scholar 

  15. Yan Y, Liu Q, Wang K, Jiang L, Yang X, Qian J, Dong X, Qiu B (2013) Enhanced peroxydisulfate electrochemiluminescence for dopamine biosensing based on Au nanoparticle decorated reduced graphene oxide. Analyst 138(23):7101–7106

    Article  CAS  Google Scholar 

  16. Yuan D, Chen S, Yuan R, Zhang J, Liu X (2014) An ECL sensor for dopamine using reduced graphene oxide/multiwall carbon nanotubes/gold nanoparticles. Sensors Actuators B Chem 191:415–420

    Article  CAS  Google Scholar 

  17. Li L, Liu H, Shen Y, Zhang J, Zhu J-J (2011) Electrogenerated chemiluminescence of Au nanoclusters for the detection of dopamine. Anal Chem 83(3):661–665

    Article  CAS  Google Scholar 

  18. Lu Q, Zhang J, Liu X, Wu Y, Yuan R, Chen S (2014) Enhanced electrochemiluminescence sensor for detecting dopamine based on gold nanoflower@ graphitic carbon nitride polymer nanosheet–polyaniline hybrids. Analyst 139(24):6556–6562

    Article  CAS  Google Scholar 

  19. Tripp RA, Dluhy RA, Zhao Y (2008) Novel nanostructures for SERS biosensing. Nano Today 3(3):31–37

    Article  CAS  Google Scholar 

  20. Qin L, Li X, Kang S-Z, Mu J (2014) Gold nanoparticles conjugated dopamine as sensing platform for SERS detection. Colloids Surface B 126:210–216

    Article  CAS  Google Scholar 

  21. An J-H, El-Said WA, Yea C-H, Kim T-H, Choi J-W (2011) Surface-enhanced Raman scattering of dopamine on self-assembled gold nanoparticles. J Nanosci Nanotechno 11(5):4424–4429

    Article  CAS  Google Scholar 

  22. Bu Y, Lee S (2012) Influence of dopamine concentration and surface coverage of Au shell on the optical properties of Au, Ag, and AgcoreAushell nanoparticles. ACS Appl Mater Interface 4(8):3923–3931

    Article  CAS  Google Scholar 

  23. Lim J-W, Kang I-J (2013) Chitosan-gold nano composite for dopamine analysis using Raman scattering. Bull Korean Chem Soc 34(1):237

    Article  CAS  Google Scholar 

  24. Lim J-W, Kang I-J (2014) Fabrication of Chitosan-gold nanocomposites combined with optical fiber as SERS substrates to detect dopamine molecules. Bull Korean Chem Soc 35(1):25–29

    Article  CAS  Google Scholar 

  25. Bu Y, Lee SW (2015) Flower-like gold nanostructures electrodeposited on indium tin oxide (ITO) glass as a SERS-active substrate for sensing dopamine. Microchim Acta 182(7–8):1313–1321

    Article  CAS  Google Scholar 

  26. Zhang Y, Li B, Chen X (2010) Simple and sensitive detection of dopamine in the presence of high concentration of ascorbic acid using gold nanoparticles as colorimetric probes. Microchim Acta 168(1–2):107–113

    Article  CAS  Google Scholar 

  27. Su H, Sun B, Chen L, Xu Z, Ai S (2012) Colorimetric sensing of dopamine based on the aggregation of gold nanoparticles induced by copper ions. Anal Methods 4(12):3981–3986

    Article  CAS  Google Scholar 

  28. Chen Z, Zhang C, Zhou T, Ma H (2015) Gold nanoparticle based colorimetric probe for dopamine detection based on the interaction between dopamine and melamine. Microchim Acta 182:1003–1008

    Article  CAS  Google Scholar 

  29. Chen Z, Zhang C, Wang C (2015) A colorimetric assay of dopamine utilizing melamine modified gold nanoparticle probes. Anal Methods 3(7):838–841

    Article  CAS  Google Scholar 

  30. Liu L, Li S, Liu L, Deng D, Xia N (2012) Simple, sensitive and selective detection of dopamine using dithiobis (succinimidylpropionate)-modified gold nanoparticles as colorimetric probes. Analyst 137(16):3794–3799

    Article  CAS  Google Scholar 

  31. Wang Z, Bai Y, Wei W, Xia N, Du Y (2013) Magnetic Fe3O4-based sandwich-type biosensor using modified gold nanoparticles as colorimetric probes for the detection of dopamine. Materials 6(12):5690–5699

    Article  CAS  Google Scholar 

  32. Liu J-M, Wang X-X, Cui M-L, Lin L-P, Jiang S-L, Jiao L, Zhang L-H (2013) A promising non-aggregation colorimetric sensor of AuNRs–Ag+ for determination of dopamine. Sensors Actuators B Chem 176:97–102

    Article  CAS  Google Scholar 

  33. Su H, Sun B, Chen L, Xu Z, Ai S (2012) Colorimetric sensing of dopamine based on the aggregation of gold nanoparticles induced by copper ions. Anal Methods 4(12):3981–3986. doi:10.1039/C2AY25794G

    Article  CAS  Google Scholar 

  34. Lee H-C, Chen T-H, Tseng W-L, Lin C-H (2012) Novel core etching technique of gold nanoparticles for colorimetric dopamine detection. Analyst 137(22):5352–5357

    Article  CAS  Google Scholar 

  35. Feng J-J, Guo H, Li Y-F, Wang Y-H, Chen W-Y, Wang A-J (2013) Single molecular functionalized gold nanoparticles for hydrogen-bonding recognition and colorimetric detection of dopamine with high sensitivity and selectivity. ACS App Mater Interface 5(4):1226–1231

    Article  CAS  Google Scholar 

  36. Zheng Y, Wang Y, Yang X (2011) Aptamer-based colorimetric biosensing of dopamine using unmodified gold nanoparticles. Sensors Actuators B Chem 156(1):95–99

    Article  CAS  Google Scholar 

  37. Chen Z, Zhang C, Zhou T, Ma H (2015) Gold nanoparticle based colorimetric probe for dopamine detection based on the interaction between dopamine and melamine. Microchim Acta 182(5–6):1003–1008

    Article  CAS  Google Scholar 

  38. Guo L, Xu Y, Ferhan AR, Chen G, Kim D-H (2013) Oriented gold nanoparticle aggregation for colorimetric sensors with surprisingly high analytical figures of merit. J Am Chem Soc 135(33):12338–12345

    Article  CAS  Google Scholar 

  39. Vargas-Bernal R, Herrera-Pérez G, Rodríguez-Miranda E (2012) Evolution and expectations of enzymatic biosensors for pesticides. Pesticides - Advances in Chemical and Botanical Pesticides. doi: 37959

  40. Raj CR, Okajima T, Ohsaka T (2003) Gold nanoparticle arrays for the voltammetric sensing of dopamine. J Electroanal Chem 543(2):127–133

    Article  CAS  Google Scholar 

  41. Hu G, Guo Y, Shao S (2009) Simultaneous determination of dopamine and ascorbic acid using the nano‐gold self‐assembled glassy carbon electrode. Electroanal 21(10):1200–1206

    Article  CAS  Google Scholar 

  42. Xue C, Han Q, Wang Y, Wu J, Wen T, Wang R, Hong J, Zhou X, Jiang H (2013) Amperometric detection of dopamine in human serumby electrochemical sensor based on gold nanoparticles doped molecularly imprinted polymers. Biosensor Bioelectron 49:199–203

    Article  CAS  Google Scholar 

  43. Goyal RN, Gupta VK, Oyama M, Bachheti N (2007) Gold nanoparticles modified indium tin oxide electrode for the simultaneous determination of dopamine and serotonin: application in pharmaceutical formulations and biological fluids. Talanta 72(3):976–983

    Article  CAS  Google Scholar 

  44. Aldana-González J, Palomar-Pardavé M, Corona-Avendaño S, Montes de Oca M, Ramírez-Silva M, Romero-Romo M (2013) Gold nanoparticles modified-ITO electrode for the selective electrochemical quantification of dopamine in the presence of uric and ascorbic acids. J Electroanal Chem 706:69–75

    Article  CAS  Google Scholar 

  45. Zhang L, Jiang X (2005) Attachment of gold nanoparticles to glassy carbon electrode and its application for the voltammetric resolution of ascorbic acid and dopamine. J Electroanal Chem 583(2):292–299

    Article  CAS  Google Scholar 

  46. Hu G-Z, Zhang D-P, Wu W-L, Yang Z-S (2008) Selective determination of dopamine in the presence of high concentration of ascorbic acid using nano-Au self-assembly glassy carbon electrode. Colloid Surf B 62(2):199–205

    Article  CAS  Google Scholar 

  47. Wang P, Li Y, Huang X, Wang L (2007) Fabrication of layer-by-layer modified multilayer films containing choline and gold nanoparticles and its sensing application for electrochemical determination of dopamine and uric acid. Talanta 73(3):431–437

    Article  CAS  Google Scholar 

  48. Devasenathipathy R, Mani V, Chen S-M, Viswanath B, Vasantha V, Govindasamy M (2014) Electrodeposition of gold nanoparticles on a pectin scaffold and its electrocatalytic application in the selective determination of dopamine. RSC Adv 4(99):55900–55907

    Article  CAS  Google Scholar 

  49. Raoof JB, Kiani A, Ojani R, Valiollahi R, Rashid-Nadimi S (2010) Simultaneous voltammetric determination of ascorbic acid and dopamine at the surface of electrodes modified with self-assembled gold nanoparticle films. J Solid State Electrochem 14(7):1171–1176

    Article  CAS  Google Scholar 

  50. Tsai T-C, Huang F-H, Chen J-JJ (2013) Selective detection of dopamine in urine with electrodes modified by gold nanodendrite and anionic self-assembled monolayer. Sensors Actuators B Chem 181:179–186

    Article  CAS  Google Scholar 

  51. de Morais A, Silveira G, Villis PCM, Maroneze CM, Gushikem Y, Pissetti FL, Lucho AMS (2012) Gold nanoparticles on a thiol-functionalized silica network for ascorbic acid electrochemical detection in presence of dopamine and uric acid. J Solid State Electrochem 16(9):2957–2966

    Article  CAS  Google Scholar 

  52. Kwak K, Kumar SS, Lee D (2012) Selective determination of dopamine using quantum-sized gold nanoparticles protected with charge selective ligands. Nanoscale 4(14):4240–4246

    Article  CAS  Google Scholar 

  53. Ge P-Y, Du Y, Xu J-J, Chen H-Y (2009) Selective detection of dopamine based on the unique property of gold nanofilm. J Electroanal Chem 633(1):182–186

    Article  CAS  Google Scholar 

  54. Ahn M, Kim J (2012) Electrochemical behavior of dopamine and ascorbic acid at dendritic Au rod surfaces: Selective detection of dopamine in the presence of high concentration of ascorbic acid. J Electroanal Chem 683:75–79

    Article  CAS  Google Scholar 

  55. Jia Z, Liu J, Shen Y (2007) Fabrication of a template-synthesized gold nanorod-modified electrode for the detection of dopamine in the presence of ascorbic acid. Electrochem Commun 9(12):2739–2743

    Article  CAS  Google Scholar 

  56. Qiu H-J, Zhou G-P, Ji G-L, Zhang Y, Huang X-R, Ding Y (2009) A novel nanoporous gold modified electrode for the selective determination of dopamine in the presence of ascorbic acid. Colloid Surf B 69(1):105–108

    Article  CAS  Google Scholar 

  57. Jia F, Yu C, Ai Z, Zhang L (2007) Fabrication of nanoporous gold film electrodes with ultrahigh surface area and electrochemical activity. Chem Mater 19(15):3648–3653

    Article  CAS  Google Scholar 

  58. Zhang Q-L, Feng J-X, Wang A-J, Wei J, Lv Z-Y, Feng J-J (2015) A glassy carbon electrode modified with porous gold nanosheets for simultaneous determination of dopamine and acetaminophen. Microchim Acta 182(3–4):589–595

    Article  CAS  Google Scholar 

  59. Zheng Y, Huang Z, Zhao C, Weng S, Zheng W, Lin X (2013) A gold electrode with a flower-like gold nanostructure for simultaneous determination of dopamine and ascorbic acid. Microchim Acta 180(7–8):537–544

    Article  CAS  Google Scholar 

  60. Zhang H, Okuni J, Toshima N (2011) One-pot synthesis of Ag–Au bimetallic nanoparticles with Au shell and their high catalytic activity for aerobic glucose oxidation. J Colloid Interface Sci 354(1):131–138

    Article  CAS  Google Scholar 

  61. Toshima N, Yonezawa T (1998) Bimetallic nanoparticles—novel materials for chemical and physical applications. New J Chem 22(11):1179–1201

    Article  CAS  Google Scholar 

  62. Thiagarajan S, Chen S-M (2007) Preparation and characterization of PtAu hybrid film modified electrodes and their use in simultaneous determination of dopamine, ascorbic acid and uric acid. Talanta 74(2):212–222

    Article  CAS  Google Scholar 

  63. Tsai T-H, Thiagarajan S, Chen S-M, Cheng C-Y (2012) Ionic liquid assisted synthesis of nano Pd–Au particles and application for the detection of epinephrine, dopamine and uric acid. Thin Solid Films 520(7):3054–3059

    Article  CAS  Google Scholar 

  64. Mahshid S, Li C, Mahshid SS, Askari M, Dolati A, Yang L, Luo S, Cai Q (2011) Sensitive determination of dopamine in the presence of uric acid and ascorbic acid using TiO2 nanotubes modified with Pd, Pt and Au nanoparticles. Analyst 136(11):2322–2329

    Article  CAS  Google Scholar 

  65. Yu D, Zeng Y, Qi Y, Zhou T, Shi G (2012) A novel electrochemical sensor for determination of dopamine based on AuNPs@ SiO2 core-shell imprinted composite. Biosens Bioelectron 38(1):270–277

    Article  CAS  Google Scholar 

  66. Tong Y, Li Z, Lu X, Yang L, Sun W, Nie G, Wang Z, Wang C (2013) Electrochemical determination of dopamine based on electrospun CeO2/Au composite nanofibers. Electrochim Acta 95:12–17

    Article  CAS  Google Scholar 

  67. Ballesteros CA, Cancino J, Marangoni VS, Zucolotto V (2014) Nanostructured Fe3O4 satellite gold nanoparticles to improve biomolecular detection. Sensors Actuators B Chem 198:377–383

    Article  CAS  Google Scholar 

  68. Sun H, Chao J, Zuo X, Su S, Liu X, Yuwen L, Fan C, Wang L (2014) Gold nanoparticle-decorated MoS2 nanosheets for simultaneous detection of ascorbic acid, dopamine and uric acid. RSC Adv 4(52):27625–27629

    Article  CAS  Google Scholar 

  69. Fang L, Huang K, Zhang B, Liu B, Liu Y, Zhang Q (2014) Nanosheet-based 3D hierarchical ZnO structure decorated with Au nanoparticles for enhanced electrochemical detection of dopamine. RSC Adv 4(90):48986–48993

    Article  CAS  Google Scholar 

  70. Kumar SS, Mathiyarasu J, Phani KL (2005) Exploration of synergism between a polymer matrix and gold nanoparticles for selective determination of dopamine. J Electroanal Chem 578(1):95–103

    Article  CAS  Google Scholar 

  71. Feng X, Mao C, Yang G, Hou W, Zhu J-J (2006) Polyaniline/Au composite hollow spheres: synthesis, characterization, and application to the detection of dopamine. Langmuir 22(9):4384–4389

    Article  CAS  Google Scholar 

  72. Gopalan AI, Lee K-P, Manesh KM, Santhosh P, Kim JH, Kang JS (2007) Electrochemical determination of dopamine and ascorbic acid at a novel gold nanoparticles distributed poly (4-aminothiophenol) modified electrode. Talanta 71(4):1774–1781

    Article  CAS  Google Scholar 

  73. Li J, Lin X (2007) Simultaneous determination of dopamine and serotonin on gold nanocluster/overoxidized-polypyrrole composite modified glassy carbon electrode. Sensors Actuators B Chem 124(2):486–493

    Article  CAS  Google Scholar 

  74. Mathiyarasu J, Senthilkumar S, Phani KLN, Yegnaraman V (2008) PEDOT-Au nanocomposite film for electrochemical sensing. Mater Lett 62(4–5):571–573. doi:10.1016/j.matlet.2007.06.004

    Article  CAS  Google Scholar 

  75. Huang X, Li Y, Wang P, Wang L (2008) Sensitive determination of dopamine and uric acid by the use of a glassy carbon electrode modified with poly (3-methylthiophene)/gold nanoparticle composites. Anal Sci 24(12):1563–1568

    Article  Google Scholar 

  76. Wang A-J, Feng J-J, Li Y-F, Xi J-L, Dong W-J (2010) In-situ decorated gold nanoparticles on polyaniline with enhanced electrocatalysis toward dopamine. Microchim Acta 171(3–4):431–436

    Article  CAS  Google Scholar 

  77. Yang L, Liu S, Zhang Q, Li F (2012) Simultaneous electrochemical determination of dopamine and ascorbic acid using AuNPs@ polyaniline core–shell nanocomposites modified electrode. Talanta 89:136–141

    Article  CAS  Google Scholar 

  78. Atta NF, Galal A, El-Ads EH (2012) Gold nanoparticles-coated poly (3, 4-ethylene-dioxythiophene) for the selective determination of sub-nano concentrations of dopamine in presence of sodium dodecyl sulfate. Electrochim Acta 69:102–111

    Article  CAS  Google Scholar 

  79. Song M-J, Lee S-K, Kim J-H, Lim D-S (2012) Dopamine sensor based on a boron-doped diamond electrode modified with a polyaniline/Au nanocomposites in the presence of ascorbic acid. Anal Sci 28(6):583–587

    Article  CAS  Google Scholar 

  80. Ojani R, Raoof J-B, Maleki AA, Safshekan S (2014) Simultaneous and sensitive detection of dopamine and uric acid using a poly (L-methionine)/gold nanoparticle-modified glassy carbon electrode. Chinese J Catal 35(3):423–429

    Article  CAS  Google Scholar 

  81. Zeng Q, Jim CK, Lam JW, Dong Y, Li Z, Qin J, Tang BZ (2009) A new disubstituted polyacetylene for the detection of α‐amino acids. Macromol Rapid Comm 30(3):170–175

    Article  CAS  Google Scholar 

  82. Védrine C, Fabiano S, Tran-Minh C (2003) Amperometric tyrosinase based biosensor using an electrogenerated polythiophene film as an entrapment support. Talanta 59(3):535–544

    Article  Google Scholar 

  83. Srinivas ARG, Peng H, Barker D, Travas-Sejdic J (2012) Switch on or switch off: an optical DNA sensor based on poly (p-phenylenevinylene) grafted magnetic beads. Biosensor Bioelectron 35(1):498–502

    Article  CAS  Google Scholar 

  84. Nien PC, Tung TS, Ho KC (2006) Amperometric glucose biosensor based on entrapment of glucose oxidase in a poly (3, 4‐ethylenedioxythiophene) film. Electroanal 18(13–14):1408–1415

    Article  CAS  Google Scholar 

  85. Uang Y-M, Chou T-C (2003) Fabrication of glucose oxidase/polypyrrole biosensor by galvanostatic method in various pH aqueous solutions. Biosensor Bioelectron 19(3):141–147

    Article  CAS  Google Scholar 

  86. Langer JJ, Filipiak M, Jasnowska J, Włodarczak J, Buładowski B (2004) Polyaniline biosensor for choline determination. Surface Sci 573(1):140–145

    Article  CAS  Google Scholar 

  87. Liu K, Pang H, Zhang J, Huang H, Liu Q, Chu Y (2014) Synthesis and characterization of a highly stable poly (3, 4-ethylenedioxythiophene)-gold nanoparticles composite film and its application to electrochemical dopamine sensors. RSC Adv 4(17):8415–8420

    Article  CAS  Google Scholar 

  88. Ragupathy D, Gopalan AI, Lee K-P (2010) Electrocatalytic oxidation and determination of ascorbic acid in the presence of dopamine at multiwalled carbon nanotube–silica network–gold nanoparticles based nanohybrid modified electrode. Sensors Actuators B Chem 143(2):696–703

    Article  CAS  Google Scholar 

  89. Teng H, Liu Y, You T (2011) Facile synthesis of gold nanoparticle-loaded carbon nanofiber composites and their electrocatalytic activity towards dopamine, ascorbic acid and uric acid. Chem Res Chin Univ 27:496–499

    CAS  Google Scholar 

  90. Curulli A, Bianchini C, Zane D (2012) Electrochemical sensing platform based on single-walled carbon nanotubes (SWCNTs)/gold nanoparticles (AuNps) nanocomposite. Electrocatal 3(1):30–38

    Article  CAS  Google Scholar 

  91. Yang S, Yin Y, Li G, Yang R, Li J, Qu L (2013) Immobilization of gold nanoparticles on multi-wall carbon nanotubes as an enhanced material for selective voltammetric determination of dopamine. Sensors Actuators B Chem 178:217–221

    Article  CAS  Google Scholar 

  92. Tian X, Cheng C, Yuan H, Du J, Xiao D, Xie S, Choi MMF (2012) Simultaneous determination of l-ascorbic acid, dopamine and uric acid with gold nanoparticles–β-cyclodextrin–graphene-modified electrode by square wave voltammetry. Talanta 93:79–85. doi:10.1016/j.talanta.2012.01.047

    Article  CAS  Google Scholar 

  93. Liu S, Yan J, He G, Zhong D, Chen J, Shi L, Zhou X, Jiang H (2012) Layer-by-layer assembled multilayer films of reduced graphene oxide/gold nanoparticles for the electrochemical detection of dopamine. J Electroanal Chem 672:40–44

    Article  CAS  Google Scholar 

  94. Yang J, Strickler JR, Gunasekaran S (2012) Indium tin oxide-coated glass modified with reduced graphene oxide sheets and gold nanoparticles as disposable working electrodes for dopamine sensing in meat samples. Nanoscale 4(15):4594–4602

    Article  CAS  Google Scholar 

  95. Wang C, Ye F, Wu H, Qian Y (2013) Depositing Au nanoparticles onto graphene sheets for simultaneous electrochemical detection ascorbic acid, dopamine and uric acid. Int J Electrochem Sci 8:2440–2448

    CAS  Google Scholar 

  96. Du J, Yue R, Ren F, Yao Z, Jiang F, Yang P, Du Y (2013) Simultaneous determination of uric acid and dopamine using a carbon fiber electrode modified by layer-by-layer assembly of graphene and gold nanoparticles. Gold Bull 46(3):137–144

    Article  CAS  Google Scholar 

  97. Zhu W, Chen T, Ma X, Ma H, Chen S (2013) Highly sensitive and selective detection of dopamine based on hollow gold nanoparticles-graphene nanocomposite modified electrode. Colloid Surf B 111:321–326

    Article  CAS  Google Scholar 

  98. Wang C, Du J, Wang H, Ce Z, Jiang F, Yang P, Du Y (2014) A facile electrochemical sensor based on reduced graphene oxide and Au nanoplates modified glassy carbon electrode for simultaneous detection of ascorbic acid, dopamine and uric acid. Sensors Actuators B Chem 204:302–309

    Article  CAS  Google Scholar 

  99. Li J, Yang J, Yang Z, Li Y, Yu S, Xu Q, Hu X (2012) Graphene–Au nanoparticles nanocomposite film for selective electrochemical determination of dopamine. Anal Method 4(6):1725–1728

    Article  CAS  Google Scholar 

  100. Prakash S, Rao CR, Vijayan M (2009) Polyaniline–polyelectrolyte–gold (0) ternary nanocomposites: synthesis and electrochemical properties. Electrochim Acta 54(24):5919–5927

    Article  CAS  Google Scholar 

  101. Jia D, Dai J, Yuan H, Lei L, Xiao D (2011) Selective detection of dopamine in the presence of uric acid using a gold nanoparticles-poly (luminol) hybrid film and multi-walled carbon nanotubes with incorporated β-cyclodextrin modified glassy carbon electrode. Talanta 85(5):2344–2351

    Article  CAS  Google Scholar 

  102. Liu X, Xie L, Li H (2012) Electrochemical biosensor based on reduced graphene oxide and Au nanoparticles entrapped in chitosan/silica sol–gel hybrid membranes for determination of dopamine and uric acid. J Electroanal Chem 682:158–163

    Article  CAS  Google Scholar 

  103. Niu LM, Lian KQ, Shi HM, Wu YB, Kang WJ, Bi SY (2013) Characterization of an ultrasensitive biosensor based on a nano-Au/DNA/nano-Au/poly (SFR) composite and its application in the simultaneous determination of dopamine, uric acid, guanine, and adenine. Sensors Actuators B Chem 178:10–18

    Article  CAS  Google Scholar 

  104. Jin L, Gao X, Wang L, Wu Q, Chen Z, Lin X (2013) Electrochemical activation of polyethyleneimine-wrapped carbon nanotubes/in situ formed gold nanoparticles functionalised nanocomposite sensor for high sensitive and selective determination of dopamine. J Electroanal Chem 692:1–8

    Article  CAS  Google Scholar 

  105. Qian T, Yu C, Wu S, Shen J (2013) Gold nanoparticles coated polystyrene/reduced graphite oxide microspheres with improved dispersibility and electrical conductivity for dopamine detection. Colloid Surf B 112:310–314

    Article  CAS  Google Scholar 

  106. Zhou C, Li S, Zhu W, Pang H, Ma H (2013) A sensor of a polyoxometalate and Au–Pd alloy for simultaneously detection of dopamine and ascorbic acid. Electrochim Acta 113:454–463

    Article  CAS  Google Scholar 

  107. Qian T, Yu C, Zhou X, Wu S, Shen J (2014) Au nanoparticles decorated polypyrrole/reduced graphene oxide hybrid sheets for ultrasensitive dopamine detection. Sensors Actuators B Chem 193:759–763

    Article  CAS  Google Scholar 

  108. Ponnusamy VK, Mani V, Chen S-M, Huang W-T, Jen J (2014) Rapid microwave assisted synthesis of graphene nanosheets/polyethyleneimine/gold nanoparticle composite and its application to the selective electrochemical determination of dopamine. Talanta 120:148–157

    Article  CAS  Google Scholar 

  109. Huang K-J, Zhang J-Z, Liu Y-J, Wang L-L (2014) Novel electrochemical sensing platform based on molybdenum disulfide nanosheets-polyaniline composites and Au nanoparticles. Sensors Actuators B Chem 194:303–310

    Article  CAS  Google Scholar 

  110. Jiang J, Du X (2014) Sensitive electrochemical sensors for simultaneous determination of ascorbic acid, dopamine, and uric acid based on Au@ Pd-reduced graphene oxide nanocomposites. Nanoscale 6(19):11303–11309

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alagarsamy Pandikumar or Nay Ming Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yusoff, N., Pandikumar, A., Ramaraj, R. et al. Gold nanoparticle based optical and electrochemical sensing of dopamine. Microchim Acta 182, 2091–2114 (2015). https://doi.org/10.1007/s00604-015-1609-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-015-1609-2

Keywords

Navigation