Skip to main content
Log in

In situ photo-immobilised pH gradient isoelectric focusing and zone electrophoresis integrated two-dimensional microfluidic chip electrophoresis for protein separation

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A method is introduced for open-column photo-induced site-selective immobilization of pH gradients in a layer of PEG-methacrylate in a multi-dimensional microfluidic chip for use in electrophoresis. It has several attractive features: (a) mixtures of fluorescently labelled proteins carbonic anhydrase, catalase and myoglobin in their native state can be separated by pH-gradient isoelectric focusing (IEF) and zone electrophoresis (CZE) using integrated 2D chip electrophoresis; (b) compared to strip packing or monolithic photo-immobilization, it overcomes the shortcomings of free carrier ampholyte-based 2D chip electrophoresis in an easy way; (c) larger amount of sample can be loaded into the open column-mode electrophoresis (d) immobilized pH gradients can be re-used and the chip can be recycled; (e) a multilayer 3D pH gradient is established by a layer-by-layer assembly technique to further increase the separation capacity. In our perception, this strategy has a large potential in microfluidic chip-based separation schemes because of its simplicity, separation power, re-usability, and separation capacity.

An open-column layer-by-layer photo-immobilised pH gradient was introduced into two-dimensional chip electrophoresis with simplicity, reusability, improved separation performance and separation capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Garfin DE (2013) Two-dimensional gel electrophoresis: an overview. Anal Chem 22:263

    Google Scholar 

  2. Chen X, Wu H, Mao C, Whitesides GM (2002) A prototype 2-D capillary electrophoresis system fabricated in PDMS. Anal Chem 74:1772

    Article  CAS  Google Scholar 

  3. Griebel A, Rund S, SchÊnfeld F, Dörner W, Konrad R, Hardt S (2004) Integrated polymer chip for two-dimensional capillary gel electrophoresis. Lab Chip 4:18

    Article  CAS  Google Scholar 

  4. Hiratsuka A, Kinoshita H, Maruo Y, Takahashi K, Akutsu S, Hayashida C, Sakairi K, Usui K, Shiseki K, Inamochi H, Nakada Y, Yodoya K, Namatame I, Unuma Y, Nakamura M, Ueyama K, Ishii Y, Yano K, Yokoyama K (2007) Fully automated two-dimensional electrophoresis system for high-throughput protein analysis. Anal Chem 79:5730

    Article  CAS  Google Scholar 

  5. Herr AE, Molho JI, Drouvalakis KA, Mikkelsen JC, Utz PJ, Santiago JG, Kenny TW (2003) Focusing and free solution electrophoresis for multi-dimensional separations. Anal Chem 75(5):1180

    Article  CAS  Google Scholar 

  6. Lu JJ, Wang S, Li G, Wang W, Pu Q, Liu S (2012) Anal Chem 84:7001–7007

    Article  CAS  Google Scholar 

  7. Emrich CA, Medintz IL, Chu WK, Mathies RA (2007) Microfabricated Two-dimensional electrophoresis device for differential protein expressionprofiling. Anal Chem 79:7360

    Article  CAS  Google Scholar 

  8. Champak D, Jiyou Z, Denslow N, Hugh Fan Z (2007) Integration of isoelectric focusing with multi-channel gel electrophoresis by using microfluidic pseudo-valves. Lab Chip 7:1806

    Article  Google Scholar 

  9. Tsai SW, Loughran M, Karube IJ (2004) Development of a microchip for 2-dimensional capillary electrophoresis. Micromech Microeng 14:1693

    Article  CAS  Google Scholar 

  10. Liu J, Yang S, Lee CS, DeVoe DL (2008) Polyacrylamide gel plugs enabling 2-D microfluidic protein separations via isoelectric focusing and multiplexed sodium dodecyl sulfate gel electrophoresis. Electrophoresis 29:2241

    Article  CAS  Google Scholar 

  11. Yang, Liu S, Lee JK, Devoe CS (2009) Microfluidic 2-D PAGE using multifunctional in situ polyacrylamide gels and discontinuous buffers. Lab Chip 9:592

    Article  CAS  Google Scholar 

  12. Greg JS, Anup KS, Anson VH (2008) On-Chip Isoelectric focusing using photopolymerized immobilized pH gradients. Anal Chem 80(9):3327

    Article  Google Scholar 

  13. Yu L, Cong YZ, Zhen L, Zhang LH, Zhang YK (2009) Microchip isoelectric focusing with monolithic immobilized pH gradient materials for proteins separation. Electrophoresis 30:4034

    Article  Google Scholar 

  14. Xia L, Wang YH, Wang JS, Liu CL, Lin FM, Zhu H, Deng YL, Geng LN (2014) On chip protein isoelectric focusing using inner wall photoimmobilized pH gradient. J Sep Sci 37:3174

    Article  Google Scholar 

  15. Wu X, Tang Q, Liu CL, Li Q, Guo YY, Yang YL, Lv XF, Geng LN, Deng YL (2011) Protein photoimmobilizations on the surface of quartz glass simply mediated by benzophenone. Appl Surf Sci 257:7415

    Article  CAS  Google Scholar 

  16. Schulze M, Belder D (2012) Poly(ethylene glycol)-coated glass microfluidic devices for chip electrophoresis. Electrophoresis 33:370

    Article  CAS  Google Scholar 

  17. Hou N, Chen Y, Yu SY, Quan ZL, Pan CH, Deng YL, Geng LN (2014) Native protein separation by isoelectric focusing and blue gel electrophoresis-coupled two-dimensional microfluidic chip electrophoresis. Chromatographia 77:1339

    Article  CAS  Google Scholar 

  18. Decher G (1997) Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 277(5330):1232

    Article  CAS  Google Scholar 

  19. Decher G, Schlenoff JB (2003) Multilayer thin films. Wiley-VCH, Weinheim

    Google Scholar 

  20. Srivastava S, Kotov NA (2008) Composite layer-by-layer (LBL) assembly with inorganic nanoparticles and nanowires. Acc Chem Res 41(12):1831

    Article  CAS  Google Scholar 

  21. Hammond PT (2004) Form and function in multilayer assembly: new applications at the nanoscale. Adv Mater 16(15):1271

    Article  CAS  Google Scholar 

  22. Tang ZY, Wang Y, Podsiadlo P, Kotov NA (2006) Biomedical applications of layer-by-layer assembly: from biomimetics to tissue engineering. Adv Mater 18(24):3203

    Article  CAS  Google Scholar 

  23. Picart C (2008) Polyelectrolyte multilayer films: from physico-chemical properties to the control of cellular processes. Curr Med Chem 15(7):685

    Article  CAS  Google Scholar 

  24. Boudou T, Crouzier T, Ren KF, Blin G, Picart C (2010) Multiple functionalities of polyelectrolyte multilayer films: new biomedical applications. Adv Mater 22(4):441

    Article  CAS  Google Scholar 

  25. Katsuhiko A, Jonathan PH, Qingmin J (2007) Layer-by-layer assembly as a versatile bottom-up nanofabrication technique for exploratory research and realistic application. Phys Chem 9:2319

    Google Scholar 

  26. Geng LN, Bo T, Liu HW, Li N, Li KA, Gu JL, Fu RN (2004) Capillary coated with layer-by-layer assembly of g-zirconium phosphate/ lysozyme nanocomposite film for open tubular capillary electrochromatography chiral separation. Chromatographia 59:65

    CAS  Google Scholar 

  27. Yu B, Cui W, Cong HL, Jiao MM, Peng L, Yang SJ (2013) A novel diazoresin/polyethylene glycol covalent capillary coating for analysis of proteins by capillary electrophoresis. RSC Adv 3:20010

    Article  CAS  Google Scholar 

  28. Park MK, Deng S, Advincula RC (2004) pH-sensitive bipolar ion-permselective ultrathin films. J Am Chem Soc 126:13723

    Article  CAS  Google Scholar 

  29. Park MK, Deng S, Advincula RC (2005) Sustained release control via photo-cross-linking of polyelectrolyte layer-by-layer hollow capsules. Langmuir 21:5272

    Article  CAS  Google Scholar 

  30. Han B, Wang P, Zhang L, Qu F, Liang Z, Deng Y, Zhang Y (2009) Microchip free flow isoelectric focusing with immobilized pH gradient on monolithic materials. Chin J Chromatogr 27(4):383

    CAS  Google Scholar 

Download references

Acknowledgments

This project was supported by the National Nature Science Foundation of China (No. 20705005), the Special-funded programme on national key scientific instruments and equipment development (2012YQ04014006) and the Fundamental Research Foundation of Beijing Institute of Technology (No. 3160012211309).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lina Geng.

Additional information

Fengmin Lin and Shiyong Yu are co-first authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 315 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, F., Yu, S., Gu, L. et al. In situ photo-immobilised pH gradient isoelectric focusing and zone electrophoresis integrated two-dimensional microfluidic chip electrophoresis for protein separation. Microchim Acta 182, 2321–2328 (2015). https://doi.org/10.1007/s00604-015-1574-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-015-1574-9

Keywords

Navigation