Skip to main content
Log in

Fabrication of nanopores in multi-layered silicon-based membranes using focused electron beam induced etching with XeF2 gas

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The emergent technology of using nanopores for stochastic sensing of biomolecules introduces a demand for the development of simple fabrication methodologies of nanopores in solid state membranes. This process becomes particularly challenging when membranes of composite layer architecture are involved. To overcome this challenge we have employed a focused electron beam induced chemical etching process. We present here the fabrication of nanopores in silicon-on-insulator based membranes in a single step process. In this process, chemical etching of the membrane materials by XeF2 gas is locally accelerated by an electron beam, resulting in local etching, with a top membrane oxide layer preventing delocalized etching of the silicon underneath. Nanopores with a funnel or conical, 3-dimensional (3D) shape can be fabricated, depending on the duration of exposure to XeF2, and their diameter is dominated by the time of exposure to the electron beam. The demonstrated ability to form high-aspect ratio nanopores in comparably thick, multi-layered silicon based membranes allows for an easy integration into current silicon process technology and hence is attractive for implementation in biosensing lab-on-chip fabrication technologies.

Nanopore drilling in silicon-on-insulator membranes is accomplished by focused electron beam induced chemical etching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1

Similar content being viewed by others

References

  1. Howorka S, Siwy Z (2009) Nanopore analytics: sensing of single molecules. Chem Soc Rev 38:2360–2384

    Article  CAS  Google Scholar 

  2. Branton D, Deamer DW, Marziali A, Bayley H, Benner SA, Butler T, Di Ventra M, Garaj S, Hibbs A, Huang XH, Jovanovich SB, Krstic PS, Lindsay S, Ling XSS, Mastrangelo CH, Meller A, Oliver JS, Pershin YV, Ramsey JM, Riehn R, Soni GV, Tabard-Cossa V, Wanunu M, Wiggin M, Schloss JA (2008) The potential and challenges of nanopore sequencing. Nat Biotechnol 26:1146–1153

    Article  CAS  Google Scholar 

  3. Movileanu L (2009) Interrogating single proteins through nanopores: challenges and opportunities. Trends Biotechnol 27:333–341

    Article  CAS  Google Scholar 

  4. Ashkenasy N, Sanchez-Quesada J, Bayley H, Ghadiri MR (2005) Recognizing a single base in an individual DNA strand: a step toward DNA sequencing in nanopores. Angew Chem Int Ed 44:1401–1404

    Article  CAS  Google Scholar 

  5. Howorka S, Cheley S, Bayley H (2001) Sequence-specific detection of individual DNA strands using engineered nanopores. Nat Biotechnol 19:636–639

    Article  CAS  Google Scholar 

  6. Dekker C (2007) Solid-state nanopores. Nat Nanotechnol 2:209–215

    Article  CAS  Google Scholar 

  7. Rhee M, Burns MA (2007) Nanopore sequencing technology: nanopore preparations. Trends Biotechnol 25:174–181

    Article  CAS  Google Scholar 

  8. Gierak J (2009) Focused ion beam technology and ultimate applications. Semicond Sci Technol 24:043001

    Article  Google Scholar 

  9. Fologea D, Ledden B, McNabb DS, Li JL (2007) Electrical characterization of protein molecules by a solid-state nanopore. Appl Phys Lett 91

  10. Han AP, Schurmann G, Mondin G, Bitterli RA, Hegelbach NG, de Rooij NF, Staufer U (2006) Sensing protein molecules using nanofabricated pores. Appl Phys Lett 88

  11. Yusko EC, Johnson JM, Majd S, Prangkio P, Rollings RC, Li J, Yang J, Mayer M (2011) Controlling protein translocation through nanopores with bio-inspired fluid walls. Nat Nanotechnol 6:253–260

    Article  CAS  Google Scholar 

  12. Wei R, Gatterdam V, Wieneke R, Tampe R, Rant U (2012) Stochastic sensing of proteins with receptor-modified solid-state nanopores. Nat Nanotechnol 7:257–263

    Article  CAS  Google Scholar 

  13. Liebes-Peer Y, Rapaport H, Ashkenasy N (2014) Amplification of single molecule translocation signal using β-strand peptide functionalized nanopores. ACS Nano 8:6822–6832

    Article  CAS  Google Scholar 

  14. Drozdov M, Kauffmann Y, Carter WC, Kaplan WD (2010) Shape-controlled nanopores in single crystals. Nanotechnology 21:475301–475307

    Article  CAS  Google Scholar 

  15. Wu MY, Smeets RMM, Zandbergen M, Ziese U, Krapf D, Batson PE, Dekker NH, Dekker C, Zandbergen HW (2009) Control of shape and material composition of solid-state nanopores. Nano Lett 9:479–484

    Article  CAS  Google Scholar 

  16. Wanunu M (2012) Nanopores: a journey towards DNA sequencing. Phys Life Rev 9:125–158

    Article  Google Scholar 

  17. Siwy Z, Heins E, Harrell CC, Kohli P, Martin CR (2004) Conical-nanotube ion-current rectifiers: the role of surface charge. J Am Chem Soc 126:10850–10851

    Article  CAS  Google Scholar 

  18. Kim MJ, Wanunu M, Bell DC, Meller A (2006) Rapid fabrication of uniformly sized nanopores and nanopore arrays for parallel DNA analysis. Adv Mater 18:3149–3153

    Article  CAS  Google Scholar 

  19. Venkatesan BM, Shah AB, Zuo JM, Bashir R (2010) DNA sensing using nanocrystalline surface-enhanced Al2O3 nanopore sensors. Adv Funct Mater 20:1266–1275

  20. Merchant CA, Healy K, Wanunu M, Ray V, Peterman N, Bartel J, Fischbein MD, Venta K, Luo Z, Johnson ATC, Drndic M (2010) DNA translocation through graphene nanopores. Nano Lett 10:2915–2921

    Article  CAS  Google Scholar 

  21. Wu MY, Krapf D, Zandbergen M, Zandbergen H, Batson PE (2005) Formation of nanopores in a sin/sio2 membrane with an electron beam. Appl Phys Lett 87(113106):113101–113103

    Google Scholar 

  22. Polonsky S, Rossnagel S, Stolovitzky G (2007) Nanopore in metal-dielectric sandwich for DNA position control. Appl Phys Lett 91:153103-153101-153103

  23. Gracheva ME, Xiong A, Aksimentiev A, Schulten K, Timp G, Leburton JP (2006) Simulation of the electric response of DNA translocation through a semiconductor nanopore–capacitor. Nanotechnology 17:622–633

    Article  CAS  Google Scholar 

  24. Petrossian L, Wilk SJ, Joshi P, Hihath S, Goodnick SM, Thornton TJ (2007) Fabrication of cylindrical nanopores and nanopore arrays in silicon-on-insulator substrates. J Microelectromech Syst 16:1419–1428

    Article  CAS  Google Scholar 

  25. Chang H, Venkatesan B, Iqbal S, Andreadakis G, Kosari F, Vasmatzis G, Peroulis D, Bashir R (2006) DNA counterion current and saturation examined by a MEMS-based solid state nanopore sensor. Biomed Microdevices 8:263–269

  26. Egerton RF, Li P, Malac M (2004) Radiation damage in the TEM and SEM. Micron 35:399–409

  27. Iqbal SM, Akin D, Bashir R (2007) Solid-state nanopore channels with DNA selectivity. Nat Nanotechnol 2:243–248

    Article  CAS  Google Scholar 

  28. Buchholz K, Tinazli A, Kleefen A, Dorfner D, Pedone D, Rant U, Tampe R, Abstreiter G, Tornow M (2008) Silicon-on-insulator based nanopore cavity arrays for lipid membrane investigation. Nanotechnology 19(445305):445301–445306

    Google Scholar 

  29. Liebes Y, Hadad B, Ashkenasy N (2011) Effects of electrons in focused electron beam induced nanopore etching. Nanotechnology 22:285303

    Article  Google Scholar 

  30. Yemini M, Hadad B, Liebes Y, Goldner A, Ashkenasy N (2009) A novel methodology for controlled fabrication of nanopores by focused electron beam induced etching. Nanotechnology 20:245302

  31. Spinney PS, Howitt DG, Smith RL, Collins SD (2010) Nanopore formation by low-energy focused electron beam machining. Nanotechnology 21:375301–375307

    Article  CAS  Google Scholar 

  32. Sökmen Ü, Stranz A, Fündling S, Wehmann H-H, Bandalo V, Bora A, Tornow M, Waag A, Peiner E (2009) Capabilities of ICP-RIE cryogenic dry etching of silicon: Review of exemplary microstructures. J Micromech Microeng 19:105005

  33. Dang ZY, Motapothula M, Ow YS, Venkatesan T, Breese MBH, Rana MA, Osman A (2011) Fabrication of large-area ultra-thin single crystal silicon membranes. Appl Phys Lett 99:223105-223101-223103

  34. Ziebart V, Paul O, Baltes H (1999) Strongly buckled square micromachined membranes. J Microelectromech Syst 8:423–432

    Article  Google Scholar 

  35. Randolph SJ, Fowlkes JD, Rack PD (2005) Focused electron-beam-induced etching of silicon dioxide. J Appl Phys 98:034902

    Article  Google Scholar 

  36. Randolph SJ, Fowlkes JD, Rack PD (2006) Focused, nanoscale electron-beam-induced deposition and etching. Crit Rev Solid State Mater Sci 31:55–89

    Article  CAS  Google Scholar 

  37. Storm AJ, Chen JH, Ling XS, Zandbergen HW, Dekker C (2005) Electron-beam-induced deformations of SiO2 nanostructures. J Appl Phys 98(014307):014301–014308

  38. Siwy ZS (2006) Ion-current rectification in nanopores and nanotubes with broken symmetry. Adv Funct Mater 16:735–746

    Article  CAS  Google Scholar 

  39. Chang H, Iqbal SM, Stach EA, King AH, Zaluzec NJ, Bashir R (2006) Fabrication and characterization of solid-state nanopores using a field emission scanning electron microscope. Appl Phys Lett 88:3

    Google Scholar 

  40. Storm AJ, Chen JH, Ling XS, Zandbergen HW, Dekker C (2003) Fabrication of solid-state nanopores with single-nanometre precision. Nat Mater 2:537–540

    Article  CAS  Google Scholar 

  41. Sexton LT, Horne LP, Martin CR (2007) Developing synthetic conical nanopores for biosensing applications. Mol Biosyst 3:667–685

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially financially supported by the BMBF under grant 0312031E, by the NTH School for Contacts in Nanosystems, and by a German-Israeli Project Cooperation (DIP) under grants AS 424/1-1 and TO 266/8-1. The authors thank Drs. V. Ezersky and E. Roth for assistance in TEM imaging and fruitful discussions, B. Hadad for technical assistance in e-beam writer operation, and Mr. M. Karsten and Mr. W. Weiß for technical help. YLP is a recipient of a Negev doctoral scholarship and the Shimona Geresh prize.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nurit Ashkenasy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liebes-Peer, Y., Bandalo, V., Sökmen, Ü. et al. Fabrication of nanopores in multi-layered silicon-based membranes using focused electron beam induced etching with XeF2 gas. Microchim Acta 183, 987–994 (2016). https://doi.org/10.1007/s00604-015-1557-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-015-1557-x

Keywords

Navigation