Skip to main content
Log in

Sensitive electrochemical determination of α-fetoprotein using a glassy carbon electrode modified with in-situ grown gold nanoparticles, graphene oxide and MWCNTs acting as signal amplifiers

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The authors describe an electrochemical immunoassay for α-fetoprotein (α-FP) using a glassy carbon electrode (GCE) modified with a nanocomposite made from gold nanoparticles, graphene oxide and multi-walled carbon nanotubes (AuNPs/GO-MWCNTs) and acting as a signal amplification matrix. The nanocomposite was synthesized in a one-pot redox reaction between GO and HAuCl4 without using an additional reductant. The stepwise assembly of the immunoelectrode was characterized by means of cyclic voltammetry and electrochemical impedance spectroscopy. The interaction of antigen and antibody on the surface of the electrode creates a barrier for electrons and causes retarded electron transfer, this resulting in decreased signals in differential pulse voltammetry of hexacyanoferrate which is added as an electrochemical probe. Using this strategy and by working at a potential of 0.2 V (vs. SCE), a wide analytical range (0.01 - 100 ng∙mL‾1) is covered. The correlation coefficient is 0.9929, and the limit of detection is as low as 3 pg∙mL‾1 at a signal-to-noise ratio of 3. This electrochemical immunoassay combines the specificity of an immunological detection scheme with the sensitivity of an electrode modified with AuNPs and GO-MWCNTs.

Schematic illustration of the fabrication procedure of the immunosensor

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lefkowitz RB, Marciniak JY, Hu CM, Schmid-Schonbein GW, Heller MJ (2010) An electrophoretic method for the detection of chymotrypsin and trypsin activity directly in whole blood. Electrophoresis 31:403–410

    Article  CAS  Google Scholar 

  2. Dutsch-Wicherek M (2010) RCAS1, MT, and vimentin as potential markers of tumor microenvironment remodeling. Am J Reprod Immunol 63:181–188

    Article  CAS  Google Scholar 

  3. Nie GM, Bai ZM, Yu WY, Chen J (2013) Electrochemiluminescence biosensor based on conducting poly(5-formylindole) for sensitive detection of ramos cells. Biomacromolecules 14:834–840

    Article  CAS  Google Scholar 

  4. Wang XW, Xie H (1998) Alpha-fetoprotein enhances the proliferation of human hepatoma cells in vitro. Life Sci 64:17–23

    Article  Google Scholar 

  5. Lin JH, He CY, Zhang LJ, Zhang SS (2009) Sensitive amperometric immunosensor for α-fetoprotein based on carbon nanotube/gold nanoparticle doped chitosan film. Anal Biochem 384:130–135

    Article  CAS  Google Scholar 

  6. Jiang W, Yuan R, Chai YQ (2010) Amperometric immunosensor based on multiwalled carbon nanotubes/Prussian blue/nanogold-modified electrode for determination of α-fetoprotein. Anal Biochem 407:65–71

    Article  CAS  Google Scholar 

  7. Lin JH, Zhang HH, Niu SY (2014) Simultaneous determination of carcinoembryonic antigen and α-fetoprotein using an ITO immunoelectrode modified with gold nanoparticles and mesoporous silica. Microchim Acta 182:719–726

    Article  Google Scholar 

  8. Nie GM, Li CX, Zhang L, Wang L (2014) Fabrication of a simple and sensitive QDs-based electrochemiluminescence immunosensor using a nanostructured composite material for the detection of tumor markers alpha-fetoprotein. J Mater Chem B 2:8321–8328

    Article  CAS  Google Scholar 

  9. Chikkaveeraiah BV, Bhirde A, Malhotra R, Patel V, Gutkind JS, Rusling JF (2009) Single-wall carbon nanotube forest arrays for immunoelectrochemical measurement of four protein biomarkers for prostate cancer. Anal Chem 81:9129–9134

    Article  Google Scholar 

  10. Zheng XT, Li CM (2010) Single living cell detection of telomerase over-expression for cancer detection by an optical fiber nanobiosensor. Biosens Bioelectron 25:1548–1552

    Article  CAS  Google Scholar 

  11. Zhou GX, Ireland J, Rayman P, Finke J, Zhou M (2010) Quantification of carbonic anhydrase IX expression in serum and tissue of renal cell carcinoma patients using enzyme-linked immunosorbent assay: prognostic and diagnostic potentials. Urology 75:257–261

    Article  Google Scholar 

  12. Kokado A, Tsuji A, Maeda M (1997) Chemiluminescence assay of alkaline phosphatase using cortisol-21-phosphate as substrate and its application to enzyme immunoassays. Anal Chim Acta 337:335–340

    Article  CAS  Google Scholar 

  13. Zhang LY, Yuan R, Huang XQ, Chai YQ, Cao SR (2004) Potentiometric immunosensor based on antiserum of Japanese B encephalitis immobilized in nano-Au/polymerized o-phenylenediamine film. Electrochem Commun 6:1222–1226

    Article  CAS  Google Scholar 

  14. Zhang L, Li CX, Zhao D, Wu TT, Nie GM (2014) An electrochemical immunosensor for the tumor marker α-fetoprotein using a glassy carbon electrode modified with a poly (5-formylindole), single-wall carbon nanotubes, and coated with gold nanoparticles and antibody. Microchim Acta 181:1601–1608

    Article  CAS  Google Scholar 

  15. Fernández F, Sánchez-Baeza F, Marco MP (2012) Nanogold probe enhanced surface plasmon resonance immunosensor for improved detection of antibiotic residues. Biosens Bioelectron 34:151–158

    Article  Google Scholar 

  16. Li RY, Zhang JJ, Wang ZP, Li ZJ, Liu JK, Gu ZG, Wang GL (2015) Novel graphene-gold nanohybrid with excellent electrocatalytic performance for the electrochemical detection of glucose. Sens Actuators B 208:421–428

    Article  CAS  Google Scholar 

  17. Liu X, Li WJ, Li L, Yang Y, Mao LG, Peng Z (2014) A label-free electrochemical immunosensor based on gold nanoparticles for direct detection of atrazine. Sens Actuators B 191:408–414

    Article  CAS  Google Scholar 

  18. Yao ZQ, Zhu MS, Jiang FX, Du YK, Wang CY, Yang P (2012) Highly efficient electrocatalytic performance based on Pt nanoflowers modified reduced graphene oxide/carbon cloth electrode. J Mater Chem 22:13707–13713

    Article  CAS  Google Scholar 

  19. Xu C, Wang X (2012) Graphene oxide-mediated synthesis of stable metal nanoparticle colloids. Colloid Surf A: Physicochem Eng Asp 404:78–82

    Article  CAS  Google Scholar 

  20. Yang MQ, Pan X, Zhang N, Xu YJ (2013) A facile one-step way to anchor noble metal (Au, Ag, Pd) nanoparticles on a reduced graphene oxide mat with catalytic activity for selective reduction of nitroaromatic compounds. CrystEngComm 15:6819–6828

    Article  CAS  Google Scholar 

  21. Nie GM, Bai ZM, Chen J, Yu WJ (2012) Simple label-free femtomolar DNA detection based on a nanostructure composite material: MWNT-doped poly(indole-6-carboxylic acid). ACS Macro Lett 1:1304–1307

    Article  CAS  Google Scholar 

  22. Wu X, Chai Y, Yuan R, Zhong X, Zhang JJ (2014) Synthesis of multiwall carbon nanotubes-graphene oxide-thionine-Au nanocomposites for electrochemiluminescence detection of cholesterol. Electrochim Acta 129:441–449

    Article  CAS  Google Scholar 

  23. Zhang KX, Lu LM, Wen YP, Xu JK, Duan XM, Zhang L, Hu DF, Nie T (2013) Facile synthesis of the necklace-like graphene oxide-multi-walled carbon nanotube nanohybrid and its application in electrochemical sensing of Azithromycin. Anal Chim Acta 787:50–56

    Article  CAS  Google Scholar 

  24. Lee JU, Lee W, Yoon SS, Kim J, Byun JH (2014) Site-selective immobilization of gold nanoparticles on graphene sheets and its electrochemical properties. Appl Surf Sci 315:73–80

    Article  CAS  Google Scholar 

  25. Zhang C, Ren LL, Wang XY, Liu TX (2010) Graphene oxide-assisted dispersion of pristine multiwalled carbon nanotubes in aqueous media. J Phys Chem C 114:11435–11440

    Article  CAS  Google Scholar 

  26. Chen H, Jiang JH, Huang Y, Deng T, Li JS, Shen GL, Yu RQ (2006) An electrochemical impedance immunosensor with signal amplification based on Au-colloid labeled antibody complex. Sens Actuators B 117:211–218

    Article  CAS  Google Scholar 

  27. Sun X, Zhu Y, Wang X (2012) Amperometric immunosensor based on deposited gold nanocrystals/4,4’-thiobisbenzenethiol for determination of carbofuran. Food Control 28:184–191

    Article  CAS  Google Scholar 

  28. Kavosi B, Hallaj R, Teymourian H, Salimi A (2014) Au nanoparticles/PAMAM dendrimer functionalized wired ethyleneamine–viologen as highly efficient interface for ultra-sensitive α-fetoprotein electrochemical immunosensor. Biosens Bioelectron 59:389–396

    Article  CAS  Google Scholar 

  29. Feng DX, Li LH, Han XW, Fang X, Li XZ, Zhang YZ (2014) Simultaneous electrochemical detection of multiple tumor markers using functionalized graphene nanocomposites as non-enzymatic labels. Sens Actuators B 201:360–368

    Article  CAS  Google Scholar 

  30. Chen X, Jia XL, Han JM, Ma J, Ma ZF (2013) Electrochemical immunosensor for simultaneous detection of multiplex cancer biomarkers based on graphene nanocomposites. Biosens Bioelectron 50:356–361

    Article  CAS  Google Scholar 

  31. Huang KJ, Li J, Wu YY, Liu YM (2013) Amperometric immunobiosensor for α-fetoprotein using Au nanoparticles/chitosan/TiO2–graphene composite based platform. Bioelectrochemistry 90:18–23

    Article  CAS  Google Scholar 

  32. Wei Q, Mao K, Wu D, Dai YX, Yang JA, Du B, Yang MH, Li H (2010) A novel label-free electrochemical immunosensor based on graphene and thionine nanocomposite. Sens Actuators B 149:314–318

    Article  CAS  Google Scholar 

  33. Shen GY, Zhang XY, Shen YM, Zhang SB, Fang L (2015) One-step immobilization of antibodies for α-1-fetoprotein immunosensor based on dialdehyde cellulose/ionic liquid composite. Anal Biochem 471:38–43

    Article  CAS  Google Scholar 

  34. Liang RP, Wang ZX, Zhang L, Qiu JD (2012) A label-free amperometric immunosensor for alpha-fetoprotein determination based on highly ordered porous multi-walled carbon nanotubes/silica nanoparticles array platform. Sens Actuators B 166:569–575

    Article  Google Scholar 

  35. Wang H, Li H, Hang YH, Wei Q, Ma HM (2014) Label-free immunosensor based on Pd nanoplates for amperometric immunoassay of alpha-fetoprotein. Biosens Bioelectron 53:305–309

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the National Natural Science Foundation of China (grant number: 51302117, 51303073, 51463008), Ganpo Outstanding Talents 555 projects (2013), the Training Plan for the Main Subject of Academic Leaders of Jiangxi Province (2011), the Natural Science Foundation of Jiangxi Province (grant number: 20142BAB206028 and 20142BAB216029), Jiangxi Provincial Department of Education (GJJ11590, GJJ13258), Postdoctoral Science Foundation of China (2014 M551857), Postdoctoral Science Foundation of Jiangxi Province (2014KY14) and the Science and Technology Landing Plan of Universities in Jiangxi province (KJLD12081) for their financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing-Kun Xu or Li-Min Lu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 382 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, YS., Zhu, XF., Yang, TT. et al. Sensitive electrochemical determination of α-fetoprotein using a glassy carbon electrode modified with in-situ grown gold nanoparticles, graphene oxide and MWCNTs acting as signal amplifiers. Microchim Acta 182, 2027–2035 (2015). https://doi.org/10.1007/s00604-015-1537-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-015-1537-1

Keywords

Navigation