Skip to main content
Log in

Determination of melamine in food contact materials using an electrode modified with gold nanoparticles and reduced graphene oxide

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We describe an electrochemical sensor for melamine based on a glassy carbon electrode (GCE) modified with reduced graphene oxide that was decorated with gold nanoparticles (AuNP/rGO). The AuNPs/rGO nanocomposite was synthesized by co-reduction of Au(III) and graphene oxide and characterized by transmission electron microscopy, Raman spectroscopy, X-ray diffraction and X-ray photoelectron spectroscopy. The response of the modified GCE to melamine was investigated by using hexacyanoferrate as an electrochemical reporter. It is found that the electrochemical response to hexacyanoferrate is increasingly suppressed by increasing concentration of melamine. This is attributed to competitive adsorption of melamine at the AuNP/rGO composite through the interaction between the amino groups of melamine and the AuNPs. The presence of rGO, in turn, provides a platform for a more uniform distribution of the AuNPs and enhances the electron transfer rate of the redox reaction. The findings were used to develop a sensitive method for the determination of melamine. Under optimized conditions, the redox peak current of hexacyanoferrate at a working voltage of 171 mV (vs. SCE) is linearly related to the concentration of melamine in 5.0 to 50 nM range. The method was successfully applied to the determination of melamine in food contact materials.

A simple electrochemical sensor based on gold nanoparticles decorated reduced graphene oxide was developed for highly sensitive measurement of melamine in food contact materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Akter H, Shaikh AA, Chowdhury TR, Rahman MS, Bakshi PK, Ahammad AJS (2013) Gold nanoparticle-modified indium tin oxide electrode for highly sensitive electrochemical detection of melamine. ECS Electrochem Lett 2(8):B13–B15. doi:10.1149/2.001309eel

    Article  CAS  Google Scholar 

  2. Yang SP, Ding JH, Zheng J, Hu B, Li JQ, Chen HW, Zhou ZQ, Qiao XL (2009) Detection of melamine in milk products by surface desorption atmospheric pressure chemical ionization mass spectrometry. Anal Chem 81(7):2426–2436. doi:10.1021/ac900063u

    Article  CAS  Google Scholar 

  3. Li JH, Kuang DZ, Feng YG, Zhang FZ, Xu ZF, Liu MQ (2012) A novel electrochemical method for sensitive detection of melamine in infant formula and milk using ascorbic acid as recognition rlement. Bull Kor Chem Soc 33(8):2499–2507. doi:10.5012/bkcs.2012.33.8.2499

    Article  CAS  Google Scholar 

  4. Vasimalai N, John SA (2013) Picomolar melamine enhanced the fluorescence of gold nanoparticles: spectrofluorimetric determination of melamine in milk and infant formulas using functionalized triazole capped gold nanoparticles. Biosens Bioelectron 42:267–272. doi:10.1016/j.bios.2012.10.023

    Article  CAS  Google Scholar 

  5. Liu SJ, Yang L, Yan QJ (2012) Research progress on migration of toxic and harmful substances in melamine tableware. Plastic Sci Technol 40(9):75–79. doi:10.1016/j.aca.2010.07.002

    Google Scholar 

  6. Wen YY, Liu HT, Han P, Gao Y, Luan F, Li XY (2010) Determination of melamine in milk powder, milk and fish feed by capillary electrophoresis: a good alternative to HPLC. J Sci Food Agric 90(13):2178–2182. doi:10.1002/jsfa.4066

    Article  CAS  Google Scholar 

  7. Sun HW, Wang LX, Ai LF, Liang SX, Wu H (2010) A sensitive and validated method for determination of melamine residue in liquid milk by reversed phase high-performance liquid chromatography with solid-phase extraction. Food Control 21(5):686–691. doi:10.1016/j.foodcont.2009.10.008

    Article  CAS  Google Scholar 

  8. Xu XM, Ren YP, Zhu Y, Cai ZX, Han JL, Huang BF, Zhu Y (2009) Direct determination of melamine in dairy products by gas chromatography/mass spectrometry with coupled column separation. Anal Chim Acta 650(1):39–43. doi:10.1016/j.aca.2009.04.026

    Article  CAS  Google Scholar 

  9. Dai HC, Shi YL, Wang YJ, Sun YJ, Hu JT, Ni PJ, Li Z (2014) Label-free turn-on fluorescent detection of melamine based on the anti-quenching ability of Hg2+ to gold nanoclusters. Biosens Bioelectron 53:76–81. doi:10.1016/j.bios.2013.09.034

    Article  CAS  Google Scholar 

  10. Ai KL, Liu YL, Lu LH (2009) Hydrogen-bonding recognition-induced color change of gold nanoparticles for visual detection of melamine in raw milk and infant formula. J Am Chem Soc 131(27):9496–9497. doi:10.1021/ja9037017

    Article  CAS  Google Scholar 

  11. Xu Q, Wei HP, Du S, Li HB, Ji ZP, Hu XY (2013) Detection of subnanomolar melamine based on electrochemical accumulation coupled with enzyme colorimetric assay. J Agric Food Chem 61(8):1810–1817. doi:10.1021/jf304034e

    Article  CAS  Google Scholar 

  12. Zhang JM, Qu SC, Zhang LS, Tang AW, Wang ZG (2011) Quantitative surface enhanced raman scattering detection based on the “sandwich” structure substrate. Spectrochim Acta A 79(3):625–630. doi:10.1016/j.saa.2011.03.045

    Article  CAS  Google Scholar 

  13. Cao Q, Zhao H, Zeng LX, Wang J, Wang R, Qiu XH, He YJ (2009) Electrochemical determination of melamine using oligonucleotides modified gold electrodes. Talanta 80(2):484–488. doi:10.1016/j.talanta.2009.07.006

    Article  CAS  Google Scholar 

  14. Jin GP, Yu B, Chen ZX, Chen XY, Zhang M, Zhao C (2011) Electrochemical behaviors and determination of melamine in neutral and acid aqueous media. J Solid State Electrochem 15(11–12):2653–2659. doi:10.1007/s10008-010-1249-8

    CAS  Google Scholar 

  15. Zhu H, Zhang SX, Li MX, Shao YH, Zhu ZW (2010) Electrochemical sensor for melamine based on its copper complex. Chem Commun 46(13):2259–2261. doi:10.1039/b924355k

    Article  CAS  Google Scholar 

  16. Zhang LM, Li T, Yu P, Ohsaka T, Mao LQ (2013) Charge-transfer interaction between melamine and quinones: towards voltammetric determination of melamine. Electrochem Commun 26:89–92. doi:10.1016/j.elecom.2012.10.026

    Article  Google Scholar 

  17. Liu FY, Yang X, Sun SG (2011) Determination of melamine based on electrochemiluminescence of Ru(bpy)3 2+ at bare and single-wall carbon nanotube modified glassy carbon electrodes. Analyst 136(2):374–378. doi:10.1039/c0an00765j

    Article  CAS  Google Scholar 

  18. Liu FY, Gao YL, Li W, Shao JT (2014) Determination of melamine based on electrochemiluminescence of Ru(bpy)3 2+ at chemically converted graphene-modified glassy carbon electrode. RSC Adv 4(64):34003–34007. doi:10.1039/c4ra03918a

    Article  CAS  Google Scholar 

  19. Cao HM, Hu XQ, Hu CY, Zhang Y, Jia NQ (2013) A novel solid-state electrochemiluminescence sensor for melamine with Ru(bpy)3 2+/mesoporous silica nanospheres/Nafion composite modified electrode. Biosens Bioelectron 41:911–915. doi:10.1016/j.bios.2012.10.004

    Article  CAS  Google Scholar 

  20. Zhou LM, Huang JS, Yang L, Li L, You TY (2014) Enhanced electrochemiluminescence based on Ru(bpy)3 2+-doped silica nanoparticles and graphene composite for analysis of melamine in milk. Anal Chim Acta 824:57–63. doi:10.1016/j.aca.2014.03.035

    Article  CAS  Google Scholar 

  21. Liao CW, Chen YR, Chang JL, Zen JM (2011) A Sensitive electrochemical approach for melamine detection using a disposable screen printed carbon electrode. Electroanalysis 23(3):573–576. doi:10.1002/elan.201000605

    CAS  Google Scholar 

  22. Cao Q, Zhao H, He YJ, Ding N, Wang J (2010) Electrochemical sensing of melamine with 3,4-dihydroxyphenylacetic acid as recognition element. Anal Chim Acta 675(1):24–28. doi:10.1016/j.aca.2010.07.002

    Article  CAS  Google Scholar 

  23. Chen D, Tang LH, Li JH (2010) Graphene-based materials in electrochemistry. Chem Soc Rev 39(8):3157–3180. doi:10.1039/b923596e

    Article  CAS  Google Scholar 

  24. Chen XM, Wu GH, Chen JM, Chen X, Xie ZX, Wang XR (2011) Synthesis of “clean” and well-dispersive Pd nanoparticles with excellent electrocatalytic property on graphene oxide. J Am Chem Soc 133(11):3693–3695. doi:10.1021/ja110313d

    Article  CAS  Google Scholar 

  25. Muszynski R, Seger B, Kamat PV (2008) Decorating graphene sheets with gold nanoparticles. J Phys Chem C 112(14):5263–5266. doi:10.1021/jp800977b

    Article  CAS  Google Scholar 

  26. Si YC, Samulski ET (2008) Exfoliated graphene separated by platinum nanoparticles. Chem Mater 20(21):6792–6797. doi:10.1021/cm801356a

    Article  CAS  Google Scholar 

  27. Cui SM, Mao S, Lu GH, Chen JH (2013) Graphene coupled with nanocrystals: opportunities and challenges for energy and sensing applications. J Phys Chem Lett 4(15):2441–2454. doi:10.1021/jz400976a

    Article  CAS  Google Scholar 

  28. Yi L, Li BB, Wei W, Wan QJ, Yang NJ (2013) A simple and high-performance hydrazine sensor based on graphene nano platelets supported metal nanoparticles. Adv Mater Res 704:246–251. doi:10.4028/www.scientific.net/AMR.704.246

    Article  Google Scholar 

  29. Goncalves G, Marques PAAP, Granadeiro CM, Nogueira HIS, Singh MK, Gracio J (2009) Surface modification of graphene nanosheets with gold nanoparticles: the role of oxygen moieties at graphene surface ongold nucleation and growth. Chem Mater 21(20):4796–4802. doi:10.1021/cm901052s

    Article  CAS  Google Scholar 

  30. Li SJ, Deng DH, Shi Q, Liu SR (2012) Electrochemical synthesis of a graphene sheet and gold nanoparticle-based nanocomposite and its application to amperometric sensing of dopamine. Microchim Acta 177(3–4):325–331. doi:10.1007/s00604-012-0782-9

    Article  CAS  Google Scholar 

  31. Ma XM, Liu ZN, Qiu CC, Chen T, Ma HY (2013) Simultaneous determination of hydroquinone and catechol based on glassy carbon electrode modified with gold-graphene nanocomposite. Microchim Acta 180(5-6):461–468. doi:10.1007/s00604-013-0949-z

    Article  CAS  Google Scholar 

  32. Zhou XZ, Huang X, Qi XY, Wu SX, Xue C, Boey FY, Yan QY, Chen P, Zhang H (2009) In situ synthesis of metal nanoparticles on single-layer graphene oxide and reduced graphene oxide surfaces. J Phys Chem C 113(25):10842–10846. doi:10.1021/jp903821n

    Article  CAS  Google Scholar 

  33. Le ZG, Liu Z, Qian Y, Wang CY (2012) A facile and efficient approach to decoration of graphene nanosheets with gold nanoparticles. Appl Surf Sci 258(14):5348–5353. doi:10.1016/j.apsusc.2012.01.169

    Article  CAS  Google Scholar 

  34. Toh SY, Loh KS, Kamarudin SK, Daud WRW (2014) Graphene production via electrochemical reduction of graphene oxide: synthesis and characterisation. Chem Eng J 251:422–434. doi:10.1016/j.cej.2014.04.004

    Article  CAS  Google Scholar 

  35. Fu XQ, Bei FL, Wang X, O’Brien S, Lombardi JR (2010) Excitation profile of surface-enhanced Raman scattering in graphene-metal nanoparticle based derivatives. Nanoscale 2(8):1461–1466. doi:10.1039/c0nr00135j

    Article  CAS  Google Scholar 

  36. Chen Y, Li Y, Sun D, Tian DB, Zhang JR, Zhu JJ (2011) Fabrication of gold nanoparticles on bilayer graphene for glucose electrochemical biosensing. J Mater Chem 21(21):7604–7611. doi:10.1039/c1jm10293a

    Article  CAS  Google Scholar 

  37. Liu M, Zhao H, Chen S, Yu H, Quan X (2012) Interface engineering catalytic graphene for smart colorimetric biosensing. ACS Nano 6(4):3142–3151. doi:10.1021/nn3010922

    Article  CAS  Google Scholar 

  38. Li L, Li BX, Cheng D, Mao LH (2010) Visual detection of melamine in raw milk using gold nanoparticles as colorimetric probe. Food Chem 122(3):895–900. doi:10.1016/j.foodchem.2010.03.032

    Article  CAS  Google Scholar 

  39. Ramadoss A, Kim SJ (2013) Facile preparation and electrochemical characterization of graphene/ZnO nanocomposite for supercapacitor applications. Mater Chem Phys 140(1):405–411. doi:10.1016/j.matchemphys.2013.03.057

    Article  CAS  Google Scholar 

  40. Liu YT, Deng J, Xiao XL, Ding L, Yuan YL, Li H, Li XT, Yan XN, Wang LL (2011) Electrochemical sensor based on a poly (para-aminobenzoic acid) film modified glassy carbon electrode for the determination of melamine in milk. Electrochim Acta 56(12):4595–4602. doi:10.1016/j.electacta.2011.02.088

    Article  CAS  Google Scholar 

  41. Xin JY, Zhang LX, Chen DD, Lin K, Fan HH, Wang Y, Xia CG (2015) Colorimetric detection of melamine based on methanobactin-mediated synthesis of gold nanoparticles. Food Chem 174:473–479

    Article  CAS  Google Scholar 

  42. Song J, Wu FY, Wan YQ, Ma LH (2014) Visual test for melamine using silver nanoparticles modified with chromotropic acid. Microchim Acta 181:1267–1274. doi:10.1007/s00604-014-1227-4

    Article  CAS  Google Scholar 

  43. Wu QQ, Long Q, Li HT, Zhang YY, Yao SZ (2015) An upconversion fluorescence resonance energy transfer nanosensor for one step detection of melamine in raw milk. Talanta 136:47–53. doi:10.1016/j.talanta.2015.01.005

    Article  CAS  Google Scholar 

  44. Dai HC, Shi Y, Wang YL, Sun YJ, Hu JT, Ni PJ, Li Z (2014) A carbon dot based biosensor for melamine detection by fluorescence resonance energy transfer. Sensors Actuators B 202:201–208. doi:10.1016/j.snb.2014.05.058

    Article  CAS  Google Scholar 

  45. Hu YX, Feng SL, Gao F, Li-Chan ECY, Lu XN (2015) Detection of melamine in milk using molecularly imprinted polymers–surface enhanced Raman spectroscopy. Food Chem 176:123–129. doi:10.1016/j.foodchem.2014.12.051

    Article  CAS  Google Scholar 

  46. Giovannozzi AM, Rolle F, Sega M, Abete MC, Marchis D, Rossia AM (2014) Rapid and sensitive detection of melamine in milk with gold nanoparticles by surface enhanced Raman scattering. Food Chem 159:250–256. doi:10.1016/j.foodchem.2014.03.013

    Article  CAS  Google Scholar 

  47. Liao CW, Chen YR, Chang JL, Zen JM (2011) Single-run electrochemical determination of melamine in dairy products and pet foods. J Agric Food Chem 59(18):9782–9787. doi:10.1021/jf201989f

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge financial support from the National Natural Science Foundation of China (21175046) and General Administration of Quality Supervision, Inspection and Quarantine of China (Nos. 2012IK048 and 2013IK017).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cuiling Zhang or Yuezhong Xian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, N., Cheng, Y., Li, C. et al. Determination of melamine in food contact materials using an electrode modified with gold nanoparticles and reduced graphene oxide. Microchim Acta 182, 1967–1975 (2015). https://doi.org/10.1007/s00604-015-1533-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-015-1533-5

Keywords

Navigation