Skip to main content
Log in

Spectrophotometric and visual detection of the herbicide atrazine by exploiting hydrogen bond-induced aggregation of melamine-modified gold nanoparticles

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We report on a method for the determination of the herbicide atrazine in tap water samples using melamine-modified gold nanoparticles (Mel-AuNPs). If a solution containing atrazine is added to a solution of such NPs, a color change occurs from wine-red to blue. This is due to a transition from monodisperse to aggregated Mel-AuNPs and caused by strong hydrogen bonding between atrazine and melamine. The color change can be monitored by a UV–vis spectrophotometer or with bare eyes. The ratio of the absorbances at 640 and 523 nm is linearly related to the logarithm of the atrazine concentration in the 0.165 to 16.5 μM range, and (with different slope) in the 16.5 μM to 330 μM range. The detection limit of atrazine is as low as 16.5 nM (S/N = 3). The method was successfully applied to the determination of atrazine in spiked tap water and gave recoveries that ranged from 72.5 % to 102.3 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Jiménez-Soto JM, Cárdenas S, Valcárcel M (2012) Dispersive micro solid-phase extraction of triazines from waters using oxidized single-walled carbon nanohorns as sorbent. J Chromatogr A 1245:17–23

    Article  Google Scholar 

  2. Liu X, Li WJ, Li L, Yang Y, Mao LG, Peng Z (2014) A label-free electrochemical immunosensor based on gold nanoparticles for direct detection of atrazine. Sensors Actuators B Chem 191:408–414

    Article  CAS  Google Scholar 

  3. Simpkins JW, Swenberg JS, Weiss N, Brusick D, Eldridge JC, Stevens JT, Handa RJ, Hovey RC, Plant TM, Pastoor TP (2011) Atrazine and breast cancer: a framework assessment of the toxicological and epidemiological evidence. Toxicol Sci 123(2):441–459

    Article  CAS  Google Scholar 

  4. Baranowska I, Barchańska H, Pacak E (2006) Procedures of trophic chain samples preparation for determination of triazines by HPLC and metals by ICP-AES methods. Environ Pollut 143(2):206–211

    Article  CAS  Google Scholar 

  5. Zhou Z, Jin M, Ding J, Zhou Y, Zheng J, Chen H (2007) Rapid detection of atrazine and its metabolite in raw urine by extractive electrospray ionization mass spectrometry. Metabolomics 3(2):101–104

    Article  CAS  Google Scholar 

  6. Djozan D, Ebrahimi B (2008) Preparation of new solid phase micro extraction fiber on the basis of atrazine-molecular imprinted polymer: application for GC and GC/MS screening of triazine herbicides in water, rice and onion. Anal Chim Acta 616(2):152–159

    Article  CAS  Google Scholar 

  7. Panuwet P, Nguyen JV, Kuklenyik P, Udunka SO, Needham LL, Barr DB (2008) Quantification of atrazine and its metabolites in urine by on-line solid-phase extraction–high-performance liquid chromatography–tandem mass spectrometry. Anal Bioanal Chem 391(5):1931–1939

    Article  CAS  Google Scholar 

  8. Černoch I, Fránek M, Diblíková I, Hilscherová K, Randák T, Ocelka T, Bláha L (2011) Determination of atrazine in surface waters by combination of POCIS passive sampling and ELISA detection. J Environ Monit 13(9):2582–2587

    Article  Google Scholar 

  9. Liu R, Guan G, Wang S, Zhang Z (2011) Core-shell nanostructured molecular imprinting fluorescent chemosensor for selective detection of atrazine herbicide. Analyst 136(1):184–190

    Article  CAS  Google Scholar 

  10. Dostálek J, Přibyl J, Homola J, Skládal P (2007) Multichannel SPR biosensor for detection of endocrine-disrupting compounds. Anal Bioanal Chem 389(6):1841–1847

    Article  Google Scholar 

  11. Valera E, Ramón-Azcón J, Barranco A, Alfaro B, Sánchez-Baeza F, Marco MP, Rodríguez Á (2010) Determination of atrazine residues in red wine samples. A conductimetric solution. Food Chem 122(3):888–894

    Article  CAS  Google Scholar 

  12. Pardieu E, Cheap H, Vedrine C, Lazerges M, Lattach Y, Garnier F, Remita S, Pernelle C (2009) Molecularly imprinted conducting polymer based electrochemical sensor for detection of atrazine. Anal Chim Acta 649(2):236–245

    Article  CAS  Google Scholar 

  13. Zhu D, Yan Y, Lei P, Shen B, Cheng W, Ju H, Ding S (2014) A novel electrochemical sensing strategy for rapid and ultrasensitive detection of Salmonella by rolling circle amplification and DNA–AuNPs probe. Anal Chim Acta 846:44–50

    Article  CAS  Google Scholar 

  14. Chen GH, Chen WY, Yen YC, Wang CW, Chang HT, Chen CF (2014) Detection of mercury (II) ions using colorimetric gold nanoparticles on paper-based analytical devices. Anal Chem 86(14):6843–6849

    Article  CAS  Google Scholar 

  15. Liu Y, Liu Y, Zhou M, Huang K, Cao J, Wang H, Chen Y (2014) Chemiluminescence detection of protein in capillary electrophoresis using aptamer-functionalized gold nanoparticles as biosensing platform. J Chromatogr A 1340:128–133

    Article  CAS  Google Scholar 

  16. Parween S, Ali A, Chauhan VS (2013) Non-natural amino acids containing peptide-capped gold nanoparticles for drug delivery application. ACS Appl Mater Inter 5(14):6484–6493

    Article  CAS  Google Scholar 

  17. Gao J, Huang X, Liu H, Zan F, Ren J (2012) Colloidal stability of gold nanoparticles modified with thiol compounds: bioconjugation and application in cancer cell imaging. Langmuir 28(9):4464–4471

    Article  CAS  Google Scholar 

  18. Guo X, Lin CS, Chen SH, Ye R, Wu VC (2012) A piezoelectric immunosensor for specific capture and enrichment of viable pathogens by quartz crystal microbalance sensor, followed by detection with antibody-functionalized gold nanoparticles. Biosens Bioelectron 38(1):177–183

    Article  CAS  Google Scholar 

  19. Liu J, Zhang X, Xiao C, Yang A, Zhao H, He Y, Li X, Yuan Z (2015) Colorimetric and visual determination of dicyandiamide using gallic acid-capped gold nanoparticles. Microchim Acta 182(1–2):435–441

    Article  CAS  Google Scholar 

  20. Yang X, Zhuo Y, Zhu S, Luo Y, Feng Y, Xu Y (2015) Selectively assaying CEA based on a creative strategy of gold nanoparticles enhancing silver nanoclusters' fluorescence. Biosens Bioelectron 64:345–351

    Article  CAS  Google Scholar 

  21. Ting SL, Ee SJ, Ananthanarayanan A, Leong KC, Chen P (2015) Graphene quantum dots functionalized gold nanoparticles for sensitive electrochemical detection of heavy metal ions. Electrochim Acta. doi:10.1016/j.electacta.2015.01.026

    Google Scholar 

  22. Wang J, Lu J, Su S, Gao J, Huang Q, Wang L, Huang W, Zuo X (2015) Binding-induced collapse of DNA nano-assembly for naked-eye detection of ATP with plasmonic gold nanoparticles. Biosens Bioelectron 65:171–175

    Article  CAS  Google Scholar 

  23. Zhou Y, Yoon J (2012) Recent progress in fluorescent and colorimetric chemosensors for detection of amino acids. Chem Soc Rev 41(1):52–67

    Article  CAS  Google Scholar 

  24. Liu D, Chen W, Wei J, Li X, Wang Z, Jiang X (2012) A highly sensitive, dual-readout assay based on gold nanoparticles for organophosphorus and carbamate pesticides. Anal Chem 84(9):4185–4191

    Article  CAS  Google Scholar 

  25. Wang X, Chen L, Chen L (2014) Colorimetric determination of copper ions based on the catalytic leaching of silver from the shell of silver-coated gold nanorods. Microchim Acta 181(1–2):105–110

    Article  CAS  Google Scholar 

  26. Shi Q, Shi Y, Pan Y, Yue Z, Zhang H, Yi C (2014) Colorimetric and bare eye determination of urinary methylamphetamine based on the use of aptamers and the salt-induced aggregation of unmodified gold nanoparticles. Microchim Acta. doi:10.1007/s00604-014-1349-8

    Google Scholar 

  27. Liu D, Wang Z, Jiang X (2011) Gold nanoparticles for the colorimetric and fluorescent detection of ions and small organic molecules. Nanoscale 3(4):1421–1433

    Article  CAS  Google Scholar 

  28. Li Y, Xu J, Sun C (2015) Chemical sensors and biosensors for the detection of melamine. RSC Adv 5(2):1125–1147

    Article  CAS  Google Scholar 

  29. Zhang X, Zhao H, Xue Y, Wu Z, Zhang Y, He Y, Li X, Yuan Z (2012) Colorimetric sensing of clenbuterol using gold nanoparticles in the presence of melamine. Biosens Bioelectron 34(1):112–117

    Article  CAS  Google Scholar 

  30. Chen Z, Zhang C, Zhou T, Ma H (2014) Gold nanoparticle based colorimetric probe for dopamine detection based on the interaction between dopamine and melamine. Microchim Acta. doi:10.1007/s00604-014-1417-0

    Google Scholar 

  31. Grabar KC, Freeman RG, Hommer MB, Natan MJ (1995) Preparation and characterization of Au colloid monolayers. Anal Chem 67(4):735–743

    Article  CAS  Google Scholar 

  32. Hill HD, Mirkin CA (2006) The bio-barcode assay for the detection of protein and nucleic acid targets using DTT-induced ligand exchange. Nat Protoc 1(1):324–336

    Article  CAS  Google Scholar 

  33. Chi H, Liu B, Guan G, Zhang Z, Han MY (2010) A simple, reliable and sensitive colorimetric visualization of melamine in milk by unmodified gold nanoparticles. Analyst 135(5):1070–1075

    Article  CAS  Google Scholar 

  34. Deng H-H, Wu CL, Liu AL, Li GW, Chen W, Lin XH (2014) Colorimetric sensor for thiocyanate based on anti-aggregation of citrate-capped gold nanoparticles. Sensors Actuators B Chem 191:479–484

    Article  CAS  Google Scholar 

  35. Oh E, Hong MY, Lee D, Nam SH, Yoon HC, Kim HS (2005) Inhibition assay of biomolecules based on fluorescence resonance energy transfer (FRET) between quantum dots and gold nanoparticles. J Am Chem Soc 127(10):3270–3271

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 31171890), the Special Fund for Agro-Scientific Research in the Public Interest (201209094) and the Innovation Team of Residue Detection & Behavior for Agricultural Contaminants (The Science and Technology Innovation Program of the Chinese Academy of Agriculture).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xin Yang or Jing Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 642 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, G., Yang, X., Li, T. et al. Spectrophotometric and visual detection of the herbicide atrazine by exploiting hydrogen bond-induced aggregation of melamine-modified gold nanoparticles. Microchim Acta 182, 1983–1989 (2015). https://doi.org/10.1007/s00604-015-1531-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-015-1531-7

Keywords

Navigation