Skip to main content
Log in

Electrochemical sandwich immunoassay for the peptide hormone prolactin using an electrode modified with graphene, single walled carbon nanotubes and antibody-coated gold nanoparticles

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We describe a new kind of electrochemical immunoassay for the peptide hormone prolactin. A glassy carbon electrode (GCE) was modified with a hybrid material consisting of graphene, single walled carbon nanotubes and gold nanoparticles (AuNPs) in a chitosan (CS) matrix. The graphene and the single wall carbon nanotubes were first placed on the GCE, and the AuNPs were then electrodeposited on the surface by cyclic voltammetry. This structure results in a comparably large surface for immobilization of the capturing antibody (Ab1). The modified electrode was used in a standard sandwich-type of immunoassay. The secondary antibody (Ab2) consisted of AuNPs with immobilized Ab2 and modified with biotinylated DNA as signal tags. Finally, alkaline phosphatase was bound to the biotinylated DNA-AuNPs-Ab2 conjugate via streptavidin chemistry. The enzyme catalyzes the hydrolysis of the α-naphthyl phosphate to form α-naphthol which is highly electroactive at an operating voltage as low as 180 mV (vs. Ag/AgCl). The resulting immunoassay exhibits high sensitivity, wide linear range (50 to 3200 pg∙mL‾1), low detection limit (47 pg∙mL‾1), acceptable selectivity and reproducibility. The assay provides a pragmatic platform for signal amplification and has a great potential for the sensitive determination of antigens other than prolactine.

The immunoassay for prolactin is based on a glassy carbon electrode modified with SWCNTs, graphene and antibody-coated gold nanoparticles, and a secondary antibody conjugated to other gold nanoparticles via a biotinylated DNA linker

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Freeman ME, Kanyicska B, Lerant A, Nagy G (2000) Prolactin: structure, function, and regulation of secretion. Physiol Rev 80(4):1523–1631

    CAS  Google Scholar 

  2. Moreno-Guzmán M, González-Cortés A, Yáñez-Sedeño P, Pingarrón JM (2011) A disposable electrochemical immunosensor for prolactin involving affinity reaction on streptavidin-functionalized magnetic particles. Anal Chim Acta 692(1):125–130

    Article  Google Scholar 

  3. Sinha YN (1995) Structural variants of prolactin: occurrence and physiological significance. Endocr Rev 16(3):354–369

    Article  CAS  Google Scholar 

  4. Fahie-Wilson M, Smith TP (2013) Determination of prolactin: the macroprolactin problem. Best Pract Res Clin Endocrinol Metab 27(5):725–742

    Article  CAS  Google Scholar 

  5. Banerjee S, Paul P, Talib VJ (2004) Serum prolactin in seizure disorders. Indian Pediatr 41(8):827–831

    Google Scholar 

  6. Bole-Feysot C, Goffin V, Edery M, Binart N, Kelly PA (1998) Prolactin (PRL) and its receptor: actions, signal transduction pathways and phenotypes observed in PRL receptor knockout mice. Endocr Rev 19(3):225–268

    Article  CAS  Google Scholar 

  7. Smith TP, Suliman AM, Fahie-Wilson MN, McKenna TJ (2002) Gross variability in the detection of prolactin in sera containing Big prolactin (macroprolactin) by commercial immunoassays. J Clin Endocrinol Metab 87(12):5410–5415

    Article  CAS  Google Scholar 

  8. Roy KS, Prakash BS (2007) Development and validation of a simple, sensitive enzyme immunoassay (EIA) for quantification of prolactin in buffalo plasma. Theriogenology 67(3):572–579

    Article  CAS  Google Scholar 

  9. Mondal M, Rajikhowa C, Prakash BS (2007) Development and validation of a highly sensitive economic enzymeimmunoassay for prolactin determination in blood plasma of mithun (Bos frontalis) and its application during milk let down and cyclicity. Anim Reprod Sci 99(1):182–195

    Article  CAS  Google Scholar 

  10. Kudryavtsev AN, Krasitskaya VV, Petunin AI, Burakov AY, Frank LA (2012) Simultaneous bioluminescent immunoassay of serum total and IgG-bound prolactins. Anal Chem 84(7):3119–3124

    Article  CAS  Google Scholar 

  11. Rojanasakul A, Udomsubpayakul U, Chinsomboon S (1994) Chemiluminescence immunoassay versus radioimmunoassay for the measurement of reproductive hormones. Int J Gynaecol Obstet 45(2):141–146

    Article  CAS  Google Scholar 

  12. Chikkaveeraiah BV, Bhirde AA, Morgan NY, Eden HS, Chen XY (2012) Electrochemical immunosensors for detection of cancer protein biomarkers. ACS Nano 6(8):6546–61

    Article  CAS  Google Scholar 

  13. Nie H, Liu S, Yu R, Jiang J (2009) Phospholipid-coated carbon nanotubes as sensitive electrochemical labels with controlled-assembly-mediated signal transduction for magnetic separation immunoassay. Angew Chem Int Ed 48(52):9862–6

    Article  CAS  Google Scholar 

  14. Wang J, Lin YH (2008) Functionalized carbon nanotubes and nanofibers forbiosensing applications. TrAC Trends Anal Chem 27(7):619–626

    Article  Google Scholar 

  15. Chuvilin A, Bichoutskaia E, Gimenez-Lopez MC, Chamberlain TW, Rance GA, Kuganathan N, Biskupek J, Kaiser U, Khlobystov AN (2011) Self-assembly of a sulphur-terminated graphene nanoribbon within a single-walled carbon nanotube. Nat Mater 10(9):687–692

    Article  CAS  Google Scholar 

  16. Chen X, Zhu J, Xi Q, Yang WS (2012) A high performance electrochemical sensor for acetaminophen based on single-walled carbon nanotube–graphene nanosheet hybrid films. Sensors Actuators B Chem 161(1):648–654

    Article  CAS  Google Scholar 

  17. Gan T, Hu SS (2011) Electrochemical sensors based on graphene materials. Microchim Acta 175(1–2):1–19

    Article  CAS  Google Scholar 

  18. Lu JJ, Liu SQ, Ge SG, Yan M, Yu JH, Hu XT (2012) Ultrasensitive electrochemical immunosensor based on Au nanoparticles dotted carbon nanotube–graphene composite and functionalized mesoporous materials. Biosens Bioelectron 33(1):29–35

    Article  Google Scholar 

  19. Zhu J, Chauhan DS, Shan D, Wu XY, Zhang GY, Zhang XJ (2014) Ultrasensitive determination of hydrazine using a glassy carbon electrode modified with Pyrocatechol Violet electrodeposited on single walled carbon nanotubes. Microchim Acta 181(7–8):813–820

    Article  CAS  Google Scholar 

  20. Zhang L, Li C, Zhao D, Wu T, Nie G (2014) An electrochemical immunosensor for the tumor marker α-fetoprotein using a glassy carbon electrode modified with a poly (5-formylindole), single-wall carbon nanotubes, and coated with gold nanoparticles and antibody. Microchim Acta 81(13–14):1601–1608

    Article  Google Scholar 

  21. Khorsand F, Darziani Azizi M, Naeemy A, Larijani B, Omidfar K (2013) An electrochemical biosensor for 3-hydroxybutyrate detection based on screen-printed electrode modified by coenzyme functionalized carbon nanotubes. Mol Biol Rep 40(3):2327–2334

    Article  CAS  Google Scholar 

  22. Liu Y, Liu Y, Feng HB, Wu YM, Joshi L, Zeng XQ, Li JH (2012) Layer-by-layer assembly of chemical reduced graphene and carbon nanotubes for sensitive electrochemical immunoassay. Biosens Bioelectron 35:63–68

    Article  CAS  Google Scholar 

  23. Zhao MQ, Liu XF, Zhang Q, Tian GL, Huang JQ, Zhu WC, Wei F (2012) Graphene/single-walled carbon nanotube hybrids: one-step catalytic growth and applications for high-rate Li–S batteries. ACS Nano 6(12):10759–10769

    CAS  Google Scholar 

  24. Cheng Q, Tang J, Ma J, Zhang H, Norio SY, Qin LC (2011) Graphene and carbon nanotube composite electrodes for supercapacitors with ultra-high energy density. Phys Chem Chem Phys 13(39):17615–17624

    Article  CAS  Google Scholar 

  25. Huang KJ, Li J, Liu YM, Cao X, Yu S, Yu M (2012) Disposable immunoassay for hepatitis B surface antigen based on a graphene paste electrode functionalized with gold nanoparticles and a Nafion-cysteine conjugate. Microchim Acta 177(3–4):419–426

    Article  CAS  Google Scholar 

  26. Ding L, Bond AM, Zhai JP, Zhang J (2013) Utilization of nanoparticle labels for signal amplification in ultrasensitive electrochemical affinity biosensors: a review. Anal Chim Acta 797:1–12

    Article  CAS  Google Scholar 

  27. Han E, Ding L, Ju HX (2011) Highly sensitive fluorescent analysis of dynamic glycan expression on living cells using glyconanoparticles and functionalized quantum dots. Anal Chem 83(18):7006–7012

    Article  CAS  Google Scholar 

  28. Shao K, Wang J, Jiang XC, Shao F, Li TT, Ye SY, Chen L, Han HY (2014) Stretch − stowage − growth strategy to fabricate tunable TriplyAmplified electrochemiluminescence immunosensor for ultrasensitive detection of pseudorabies virus antibody. Anal Chem 86:5749–5757

    Article  CAS  Google Scholar 

  29. Song C, Xie GM, Wang L, Liu LZ, Tian G, Xiang H (2014) DNA-based hybridization chain reaction for an ultrasensitive cancer marker EBNA-1 electrochemical immunosensor. Biosens Bioelectron 58:68–74

    Article  CAS  Google Scholar 

  30. Zhang B, Liu BQ, Tang DP, Niessner R, Chen GN, Knopp D (2012) DNA-based hybridization chain reaction for amplified bioelectronic signal and ultrasensitive detection of proteins. Anal Chem 84:5392–5399

    Article  CAS  Google Scholar 

  31. Tang J, Tang DP, Su BL, Huang JX, Qiu B, Chen GN (2011) Enzyme-free electrochemical immunoassay with catalytic reduction of p-nitrophenol and recycling of p-aminophenol using gold nanoparticles-coated carbon nanotubes as nanocatalysts. Biosens Bioelectron 26:3219–3226

    Article  CAS  Google Scholar 

  32. Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, Ahn JH, Kim P, Choi JY, Hong BH (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457(7230):706–710

    Article  CAS  Google Scholar 

  33. Guo SJ, Wang EK (2007) Synthesis and electrochemical applications of gold nanoparticles. Anal Chim Acta 598(2):181–192

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the National Natural Science Foundation of China (81371904) and (81101638), the Natural Science Foundation Project of CQ (CSTC2013jjB10019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shijia Ding.

Additional information

Shengqiang Li and Yurong Yan contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 6900 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Yan, Y., Zhong, L. et al. Electrochemical sandwich immunoassay for the peptide hormone prolactin using an electrode modified with graphene, single walled carbon nanotubes and antibody-coated gold nanoparticles. Microchim Acta 182, 1917–1924 (2015). https://doi.org/10.1007/s00604-015-1528-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-015-1528-2

Keywords

Navigation