Skip to main content
Log in

Electrochemical determination of dopamine using octahedral SnO2 nanocrystals bound to reduced graphene oxide nanosheets

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Novel nanocomposites were prepared from graphene oxide (GO) and octahedral tin dioxide (SnO2) through a facile process that included synthesis of octahedral SnO2 and the reduction of GO with ascorbic acid. The morphology and structure of the nanocomposites were characterized by UV–vis spectroscopy, transmission electron microscopy, and Raman spectroscopy. The nanocomposites were placed on a glassy carbon electrode where they displayed excellent performance in terms of differential pulse voltammetric determination of dopamine (DA). This is attributed to (a) the synergetic interactions between reduced graphene oxide (r-GO) and octahedral SnO2, and (b) the presence of a large number of active sites on the nanocomposites surface. The sensor responds to DA in the concentration range of 0.08 to 30 μM, with a 6 nM detection limit if operated at 0.24 V (vs. Ag/AgCl). The modified electrode also widely suppresses the background current resulting from excess ascorbic acid and uric acids. The method was applied to the determination of DA in spiked human urine and gave satisfactory results, with recoveries in the range from 96.4 to 98.2 %.

Green and facile synthesis of reduced graphene oxide-octahedral SnO2 (r-GO-SnO2) nanocomposites for the sensitive and selective electrochemical detection of dopamine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bianco A, Cheng HM, Enoki T, Gogotsi Y, Hurt RH (2013) All in the graphene family-A recommended nomenclature for two-dimensional carbon materials. Carbon 65:1–6

    Article  CAS  Google Scholar 

  2. Hu Y, Li X, Geng D, Cai M, Li R, Sun X (2013) Influence of paper thickness on the electrochemical performances of graphene papers as an anode for lithium ion batteries. Electrochim Acta 91:227–233

    Article  CAS  Google Scholar 

  3. Chakrabarti MH, Low CTJ, Brandon NP, Yufit V, Hashim MA (2013) Progress in the electrochemical modification of graphene-based materials and their applications. Electrochim Acta 107:424–440

    Article  Google Scholar 

  4. Huang KJ, Liu YJ, Wang HB, Gan T, Liu YM, Wang LL (2014) Signal amplification for electrochemical DNA biosensor based on two-dimensional graphene analogue tungsten sulfide-grapheme composites and gold nanoparticles. Sensors Actuators B 191:828–836

    Article  CAS  Google Scholar 

  5. Huang KJ, Liu YJ, Cao JT, Wang HB (2014) An aptamer electrochemical assay for sensitive detection of immunoglobulin E based on tungsten disulfide-graphene composites and gold nanoparticles. RSC Adv 4(69):36742–36748

    Article  CAS  Google Scholar 

  6. Huang KJ, Liu YJ, Wang HB, Wang YY (2014) A sensitive electrochemical DNA biosensor based on silver nanoparticles-polydopamine@graphene composite. Electrochim Acta 118:130–137

    Article  CAS  Google Scholar 

  7. Huang KJ, Wang L, Li J, Yu M (2013) Electrochemical sensing of catechol using a glassy carbon electrode modified with a composite made from silver nanoparticles, polydopamine, and grapheme. Microchim Acta 180:751–757

    Article  CAS  Google Scholar 

  8. Wang C, Zhou Y, Ge MY, Xu XB, Zhang ZL, Jiang JZ (2010) Large-scale synthesis of SnO2 nanosheets with high lithium storage capacity. J Am Chem Soc 132(1):46–47

    Article  CAS  Google Scholar 

  9. Jiang LY, Wu XL, Guo YG, Wan LJ (2009) SnO2-based hierarchical nanomicrostructures: facile synthesis and their applications in gas sensors and lithium-ion batteries. J Phys Chem C 113(32):14213–14219

    Article  CAS  Google Scholar 

  10. Selvan RK, Perelshtein I, Perkas N, Gedanken A (2008) Synthesis of hexagonal-shaped SnO2 nanocrystals and SnO2@C nanocomposites for electrochemical redox supercapacitors. J Phys Chem C 112:1825–1830

    Article  CAS  Google Scholar 

  11. Wang YF, Li JW, Hou YF, Yu XY, Su CY, Kuang DB (2010) Hierarchical tin oxide octahedra for highly efficient dye-sensitized solar cells. Chem Eur J 16(29):8620–8625

    Article  CAS  Google Scholar 

  12. Kong FY, Li WW, Wang JY, Wang W (2015) UV-assisted photocatalytic synthesis of highly dispersed Ag nanoparticles supported on DNA decorated graphene for quantitative iodide analysis. Biosensor Bioelectron 69:206–212

    Article  CAS  Google Scholar 

  13. Kong FY, Li XR, Zhao WW, Xu JJ, Chen HY (2012) Graphene oxide-thionine-Au nanostructure composites: preparation and applications in non-enzymatic glucose sensing. Electrochem Commun 14:59–62

    Article  CAS  Google Scholar 

  14. Lee JH, Ribeiro C, Giraldi TR, Longo E, Leite ER, Varela JA (2004) Photoluminescence in quantum-confined SnO2 nanocrystals: evidence of free exciton decay. Appl Phys Lett 84(10):1745–1747

    Article  CAS  Google Scholar 

  15. Baek S, Yu SH, Park SK, Pucci A, Marichy C, Lee DC, Sung YE, Piao Y, Pinna N (2011) A one-pot microwave-assisted non-aqueous sol–gel approach to metal oxide/graphene nanocomposites for li-ion batteries. RSC Adv 1(9):1687–1690

    Article  CAS  Google Scholar 

  16. Lian P, Zhu X, Liang S, Li Z, Yang W, Wang H (2010) Large reversible capacity of high quality graphene sheets as an anode material for lithium-ion batteries. Electrochim Acta 55(12):3909–3914

    Article  CAS  Google Scholar 

  17. Li YM, Lv XJ, Lu J, Li JH (2010) Preparation of SnO2-nanocrystal/graphene-nanosheets composites and their lithium storage ability. J Phys Chem C 114(49):21770–21774

    Article  CAS  Google Scholar 

  18. Wang HL, Robinson JT, Li XL, Dai HJ (2009) Solvothermal reduction of chemically exfoliated graphene sheets. J Am Chem Soc 131(29):9910–9911

    Article  CAS  Google Scholar 

  19. Bourlinos AB, Gournis D, Petridis D, Szabó T, Szeri A, Dékány I (2003) Graphite oxide: chemical reduction to graphite and surface modification with primary aliphatic amines and amino acids. Langmuir 19(15):6050–6055

    Article  CAS  Google Scholar 

  20. Xu CH, Sun J, Gao L (2012) Controllable synthesis of monodisperse ultrathin SnO2 nanorods onnitrogen-doped grapheme and its ultrahigh lithium storage properties. Nanoscale 4(17):5425–5430

    Article  CAS  Google Scholar 

  21. Zhang M, Lei D, Du ZF, Yin XM, Chen LB, Li QH, Wang YG, Wang TH (2011) Fast synthesis of SnO2/graphene composites by reducing graphene oxide with stannous ions. J Mater Chem 21(6):1673–1676

    Article  CAS  Google Scholar 

  22. Zhang JL, Yang HJ, Shen GX, Cheng P, Guo SW (2010) Reduction of graphene oxide via L-ascorbic acid. Chem Commun 46(7):1112–1114

    Article  CAS  Google Scholar 

  23. Sanghavi BJ, Wolfbeis OS, Hirsch T, Swami NS (2015) Nanomaterial-based electrochemical sensing of neurological drugs and neurotransmitters. Microchim Acta 182(1–2):1–41

    Article  CAS  Google Scholar 

  24. Breczkoa J, Plonska-Brzezinskaa ME, Echegoyenb L (2012) Electrochemical oxidation and determination of dopamine in the presence of uric and ascorbic acids using a carbon nano-onion and poly(diallyldimethylammonium chloride) composite. Electrochim Acta 72:61–67

    Article  Google Scholar 

  25. Yang AK, Xue Y, Zhang Y, Zhang XF, Zhao H, Li XG, He YJ, Yuan ZB (2013) A simple one-pot synthesis of graphene nanosheet/SnO2 nanoparticle hybrid nanocomposites and their application for selective and sensitive electrochemical detection of dopamine. J Mater Chem B 1(13):1804–1811

    Article  CAS  Google Scholar 

  26. Sun W, Wang XZ, Wang YH, Ju XM, Xu L, Li GG, Sun ZF (2013) Application of graphene-SnO2 nanocomposite modified electrode for the sensitive electrochemical detection of dopamine. Electrochim Acta 87:317–322

    Article  CAS  Google Scholar 

  27. Zhang FY, Li YJ, Gu YE, Wang ZH, Wang CM (2011) One-pot solvothermal synthesis of a Cu2O/Graphene nanocomposite and its application in an electrochemical sensor for dopamine. Microchim Acta 173(1–2):103–109

    Article  CAS  Google Scholar 

  28. Li SJ, Deng DH, Shi Q, Liu SR (2012) Electrochemical synthesis of a graphene sheet and gold nanoparticle-based nanocomposite, and its application to amperometric sensing of dopamine. Microchim Acta 177(3–4):325–331

    Article  CAS  Google Scholar 

  29. Dumitrescu I, Edgeworth JP, Unwin PR, Macpherson JV (2009) Ultrathin carbon nanotube mat electrodes for enhanced amperometric detection. Adv Mater 21(30):3105–3109

    Article  CAS  Google Scholar 

  30. Tu XM, Xie QJ, Jiang SY, Yao SZ (2007) Electrochemical quartz crystal impedance study on the overoxidation of polypyrrole carbon nanotubes composite film for amperometric detection of dopamine. Biosens Bioelectron 22(12):2819–2826

    Article  CAS  Google Scholar 

  31. Moreno M, Arribasa AS, Bermejo E, Chicharro M (2010) Selective detection of dopamine in the presence of ascorbic acid using carbon nanotube modified screen-printed electrodes. Talanta 80(5):2149–2156

    Article  CAS  Google Scholar 

  32. Adekunle AS, Agboola BO, Kenneth JP, Ozoemena KI (2010) Electrocatalytic detection of dopamine at single-walled carbon nanotubes-iron (III) oxide nanoparticles platform. Sensors Actuators B 148(1):93–102

    Article  CAS  Google Scholar 

  33. Deng CY, Chen JH, Wang MD, Xiao CH, Nie Z, Yao SZ (2009) A novel and simple strategy for selective and sensitive determination of dopamine based on the boron-doped carbon nanotubes modified electrode. Biosens Bioelectron 24(7):2091–2094

    Article  CAS  Google Scholar 

  34. Liu S, Yan J, He GW, Zhong DD, Chen JX, Shi LY, Zhou XM, Jiang HJ (2012) Layer-by-layer assembled multilayer films of reduced graphene oxide/gold nanoparticles for the electrochemical detection of dopamine. J Electroanal Chem 672:40–44

    Article  CAS  Google Scholar 

  35. Kalimuthu P, John SA (2010) Simultaneous determination of ascorbic acid, dopamine, uric acid and xanthine using a nanostructured polymer film modified electrode. Talanta 80:1686–1691

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (21305122), the Natural Science Foundation of Jiangsu Province (BK20131218), the Opening Foundation of the State Key Laboratory of Analytical Chemistry for Life Science of Nanjing University (SKLACLS1312), and the Industry-University-Research Cooperative Innovation Foundation of Jiangsu Province (BY2014108-19, BY2014108-08).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fen-Ying Kong or Wei Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 851 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, HF., Chen, TT., Luo, Y. et al. Electrochemical determination of dopamine using octahedral SnO2 nanocrystals bound to reduced graphene oxide nanosheets. Microchim Acta 182, 2001–2007 (2015). https://doi.org/10.1007/s00604-015-1521-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-015-1521-9

Keywords

Navigation