Skip to main content
Log in

Screen-printed electrodes modified with carbon nanotubes or graphene for simultaneous determination of melatonin and serotonin

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Single-walled carbon nanotubes (SWCNT), multi-walled carbon nanotubes (MWCNT) and graphene have been tested as carbon allotropes for the modification of carbon screen-printed electrodes (CSPEs) to simultaneously determine melatonin (MT) and serotonin (5-HT). Two groups of CSPEs, both 4 mm in diameter, were explored: The first includes commercial SWCNT, MWCNT and graphene, the second includes SWCNT, MWCNT, graphene oxide nanoribbons and reduced nanoribbons that were drop casted on the electrodes. The carbon nanomaterials enhanced the electroactive area in the following order: CSPE <MWCNTs <SWCNTs <graphene. This allowed the simultaneous determination of 5-HT and MT at the working potentials of +50 mV and +390 mV (vs. Ag), respectively. The use of carbon nanomaterials, in particular of graphene oxide nanoribbons on CSPEs, represents an excellent and disposable tool for sensing the two target molecules in even small sample volumes. Figures of merit for MT and 5-HT include (a) detection limit of 1.1 and 0.4 μM for MT and 5-HT, respectively; (b) an inter-electrode reproducibility with RSD ≤ 8 %; (c) 120 s response time, and (d) recoveries (in case of spiked samples) ranging from 94 to 103 % (with an RSD < 1 %).

Carbon nanomaterials on screen-printed electrodes: smart electrochemistry for fast, simultaneous and reliable detection of serotonin the molecule of happiness and melatonin the molecule of darkness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Martín A, Escarpa A (2014) Graphene: the cutting-edge interaction between chemistry and electrochemistry. TrAC Trends Anal Chem 56:13–26

    Article  Google Scholar 

  2. Martín A, López MÁ, González MC, Escarpa A (2015) Multidimensional carbon allotropes as electrochemical detectors in capillary and microchip electrophoresis. Electrophoresis 36:179

    Article  Google Scholar 

  3. Pumera M, Escarpa A (2009) Nanomaterials as electrochemical detectors in microfluidics and CE: fundamentals, designs, and applications. Electrophoresis 30(19):3315–3323

    Article  CAS  Google Scholar 

  4. Escarpa A (2012) Food electroanalysis: sense and simplicity. Chem Rec 12(1):72–91

    Article  CAS  Google Scholar 

  5. Vitalini S, Gardana C, Zanzotto A, Fico G, Faoro F, Simonetti P, Iriti M (2011) From vineyard to glass: agrochemicals enhance the melatonin and total polyphenol contents and antiradical activity of red wines. J Pineal Res 51(3):278–285

    Article  CAS  Google Scholar 

  6. Vitalini S, Gardana C, Simonetti P, Fico G, Iriti M (2013) Melatonin, melatonin isomers and stilbenes in Italian traditional grape products and their antiradical capacity. J Pineal Res 54(3):322–333

    Article  CAS  Google Scholar 

  7. Gomez FJV, Raba J, Cerutti S, Silva MF (2012) Monitoring melatonin and its isomer in Vitis vinifera cv. Malbec by UHPLC-MS/MS from grape to bottle. J Pineal Res 52(3):349–355. doi:10.1111/j.1600-079X.2011.00949.x

    Article  CAS  Google Scholar 

  8. Gomez FJV, Hernández IG, Martinez LD, Silva MF, Cerutti S (2013) Analytical tools for elucidating the biological role of melatonin in plants by LC-MS/MS. Electrophoresis 34(12):1749–1756

    Article  CAS  Google Scholar 

  9. Kocadaǧli T, Yilmaz C, Gökmen V (2014) Determination of melatonin and its isomer in foods by liquid chromatography tandem mass spectrometry. Food Chem 153:151–156

    Article  Google Scholar 

  10. Pothinuch P, Tongchitpakdee S (2011) Melatonin contents in mulberry (Morus spp.) leaves: effects of sample preparation, cultivar, leaf age and tea processing. Food Chem 128(2):415–419

    Article  CAS  Google Scholar 

  11. Riga P, Medina S, García-Flores LA, Gil-Izquierdo Á (2014) Melatonin content of pepper and tomato fruits: effects of cultivar and solar radiation. Food Chem 156:347–352

    Article  CAS  Google Scholar 

  12. Stürtz M, Cerezo AB, Cantos-Villar E, Garcia-Parrilla MC (2011) Determination of the melatonin content of different varieties of tomatoes (Lycopersicon esculentum) and strawberries (Fragaria ananassa). Food Chem 127(3):1329–1334

    Article  Google Scholar 

  13. Karunanithi D, Radhakrishna A, Sivaraman KP, Biju VMN (2013) Quantitative determination of melatonin in milk by LC-MS/MS. J Food Sci Technol 51(4):805–812

  14. Stehle JH, Saade A, Rawashdeh O, Ackermann K, Jilg A, Sebestény T, Maronde E (2011) A survey of molecular details in the human pineal gland in the light of phylogeny, structure, function and chronobiological diseases. J Pineal Res 51(1):17–43

    Article  CAS  Google Scholar 

  15. Feldman JM, Lee EM (1985) Serotonin content of foods: effect on urinary excretion of 5-hydroxyindoleacetic acid. Am J Clin Nutr 42(4):639–643

    CAS  Google Scholar 

  16. Cao J, Murch SJ, O’Brien R, Saxena PK (2006) Rapid method for accurate analysis of melatonin, serotonin and auxin in plant samples using liquid chromatography-tandem mass spectrometry. J Chromatogr A 1134(1-2):333–337

    Article  CAS  Google Scholar 

  17. Musijowski J, Pobozy E, Trojanowicz M (2006) On-line preconcentration techniques in determination of melatonin and its precursors/metabolites using micellar electrokinetic chromatography. J Chromatogr A 1104(1-2):337–345

    Article  CAS  Google Scholar 

  18. Harumi T, Matsushima S (2000) Separation and assay methods for melatonin and its precursors. J Chromatogr B 747(1-2):95–110

    Article  CAS  Google Scholar 

  19. Huang X, Mazza G (2011) Application of LC and LC-MS to the analysis of melatonin and serotonin in edible plants. Crit Rev Food Sci Nutr 51(4):269–284

    Article  CAS  Google Scholar 

  20. Hasanzadeh M, Shadjou N, Omidinia E (2013) A novel electroanalytical method for simultaneous detection of two neurotransmitter dopamine and serotonin in human serum. J Neurosci Methods 219(1):52–60

    Article  CAS  Google Scholar 

  21. Patel BA (2008) Continuous amperometric detection of co-released serotonin and melatonin from the mucosa in the ileum. Analyst 133(4):516–524

    Article  CAS  Google Scholar 

  22. Qu W, Wang F, Hu S, Cui D (2005) Electrocatalytic properties and voltammetric determination of melatonin at a nanostructured film electrode. Microchim Acta 150(2):109–114

    Article  CAS  Google Scholar 

  23. Levent A (2012) Electrochemical determination of melatonin hormone using a boron-doped diamond electrode. Diam Relat Mater 21:114–119

    Article  CAS  Google Scholar 

  24. Ball AT, Patel BA (2012) Rapid voltammetric monitoring of melatonin in the presence of tablet excipients. Electrochim Acta 83:196–201

    Article  CAS  Google Scholar 

  25. Yang X, Feng B, He X, Li F, Ding Y, Fei J (2013) Carbon nanomaterial based electrochemical sensors for biogenic amines. Microchim Acta 180(11-12):935–956. doi:10.1007/s00604-013-1015-6

    Article  CAS  Google Scholar 

  26. Sanghavi BJ, Wolfbeis OS, Hirsch T, Swami NS (2015) Nanomaterial-based electrochemical sensing of neurological drugs and neurotransmitters. Microchim Acta 182:1–41.  doi:10.1007/s00604-014-1308-4

  27. Martin A, Hernandez-Ferrer J, Vazquez L, Martinez M-T, Escarpa A (2014) Controlled chemistry of tailored graphene nanoribbons for electrochemistry: a rational approach to optimizing molecule detection. RSC Adv 4(1):132–139. doi:10.1039/c3ra44235g

    Article  CAS  Google Scholar 

  28. Kosynkin DV, Higginbotham AL, Sinitskii A, Lomeda JR, Dimiev A, Price BK, Tour JM (2009) Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458(7240):872–876

    Article  CAS  Google Scholar 

  29. Gao X, Jang J, Nagase S (2010) Hydrazine and thermal reduction of graphene oxide: reaction mechanisms, product structures, and reaction design. J Phys Chem C 114(2):832–842

    Article  CAS  Google Scholar 

  30. Anson FC, Osteryoung RA (1983) Chronocoulometry: a convenient, rapid and reliable technique for detection and determination of adsorbed reactants. J Chem Educ 60(4):293–296

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge financial support provided by the Spanish Ministry of Economy and Competitiveness (CTQ2011-28135) and from the NANOAVANSENS program from the Community of Madrid (S2013/MIT-3029). D. Federico Jose Vicente Gomez acknowledges BIP TII fellowship received from CONICET and D. Aída Martín acknowledges the FPU fellowship received from the Ministry of Education, Culture and Sports. The authors acknowledge to Dra. María Teresa Martínez and Dr. Javier Hernández-Ferrer from Instituto de Carboquímica ICB-CSIC of Zaragoza (Spain) for supplying GON and GRN samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Escarpa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomez, F.J.V., Martín, A., Silva, M.F. et al. Screen-printed electrodes modified with carbon nanotubes or graphene for simultaneous determination of melatonin and serotonin. Microchim Acta 182, 1925–1931 (2015). https://doi.org/10.1007/s00604-015-1520-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-015-1520-x

Keywords

Navigation