Microsphere-based immunoassay integrated with a microfluidic network to perform logic operations


Lab on a chip (LOC) intelligent diagnostics can be described by molecular logic-based circuits. We report on the development of an LOC approach with logic capability for screening combinations of antigen and antibody in the same sample. A microsphere-based immunoassay was integrated with a microfluidic network device to perform the logic operations AND and INHIBIT. Using the clinically relevant biomarkers TNF-α cytokine and anti-TNF-α antibody, we obtained a fluorescent output in the presence of both inputs. This results in an AND operation, while the presence of only one specific input results in a different fluorescent signal, thereby indicating the INHIBIT operation. This approach demonstrates the effective use of molecular logic computation for developing portable, point-of-care technologies for diagnostic purposes due to fast detection times, minimal reagent consumption and low costs. This model system may be further expanded to screening of multiple disease markers, combinatorial logic applications, and developing “smart” sensors and therapeutic technologies.

We describe an integrated multiplexed microsphere based-immunoassay on a microfluidic platform to perform simple Boolean logic operations for screening combinations of antigen and antibody in a biological sample. Our model system yielded AND and INHIBIT functionalities using the clinically relevant biomarkers TNF-alpha and anti-TNF-alpha antibody.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    Dittrich PS, Manz A (2006) Lab-on-a-chip: microfluidics in drug discovery. Nat Rev Drug Discov 5:210–218. doi:10.1038/nrd1985

    CAS  Article  Google Scholar 

  2. 2.

    Kovarik ML, Ornoff DM, Melvin AT, Dobes NC, Wang Y, Dickinson AJ, Gach PC, Shah PK (2013) Allbritton NL (2013) Micro total analysis systems: fundamental advances and applications in the laboratory, clinic, and field. Anal Chem 85(2):451–472. doi:10.1021/ac3031543

    CAS  Article  Google Scholar 

  3. 3.

    Elvira KS, Casadevall i Solvas X, Wootton RC, deMello AJ (2013) The past, present and potential for microfluidic reactor technology in chemical synthesis. Nat Chem 5:905–915. doi:10.1038/nchem.1753

    CAS  Article  Google Scholar 

  4. 4.

    King KR, Wang S, Irimia D, Jayaraman A, Toner M, Yarmush ML (2007) A high-throughput microfluidic real-time gene expression living cell array. Lab Chip 7:77–85. doi:10.1039/B612516F

    CAS  Article  Google Scholar 

  5. 5.

    Brouzes E, Medkova M, Savenelli N, Marran D, Twardowski M, Hutchison JB, Rothberg JM, Link DR, Perrimon N, Samuels ML (2009) Droplet microfluidic technology for single-cell high-throughput screening. Proc Natl Acad Sci U S A 106:14195–14200. doi:10.1073/pnas.0903542106

    CAS  Article  Google Scholar 

  6. 6.

    Eastburn DJ, Sciambi A, Abate AR (2013) Ultrahigh-throughput Mammalian single-cell reverse-transcriptase polymerase chain reaction in microfluidic drops. Anal Chem 85:8016–8021. doi:10.1021/ac402057q

    CAS  Article  Google Scholar 

  7. 7.

    Warkiani ME, Khoo BL, Tan DS, Bhagat AA, Lim WT, Yap YS, Lee SC, Soo RA, Han J, Lim CT (2014) An ultra-high-throughput spiral microfluidic biochip for the enrichment of circulating tumor cells. Analyst 139:3245–3255. doi:10.1039/c4an00355a

    CAS  Article  Google Scholar 

  8. 8.

    Najah M, Calbrix R, Mahendra-Wijaya IP, Beneyton T, Griffiths AD, Drevelle A (2014) Droplet-based microfluidics platform for ultra-high-throughput bioprospecting of cellulolytic microorganisms. Chem Biol 21(12):1722–1732. doi:10.1016/j.chembiol.2014.10.020

    CAS  Article  Google Scholar 

  9. 9.

    Mao X, Huang TJ (2012) Exploiting mechanical biomarkers in microfluidics. Lab Chip 12:4006–4009. doi:10.1039/C2LC90100E

    CAS  Article  Google Scholar 

  10. 10.

    Golberg A, Linshiz G, Kravets I, Stawski N, Hillson NJ, Yarmush ML, Marks RS, Konry T (2014) Cloud-enabled microscopy and droplet microfluidic platform for specific detection of Escherichia coli in water. PLoS ONE 9(1):e86341. doi:10.1371/journal.pone.0086341

    Article  Google Scholar 

  11. 11.

    Hughes AJ, Herr AE (2012) Microfluidic western blotting. Proc Natl Acad Sci U S A 109:21450–21455. doi:10.1073/pnas.1207754110

    CAS  Article  Google Scholar 

  12. 12.

    Marcus JS, Anderson WF, Quake SR (2006) Microfluidic single-cell mRNA isolation and analysis. Anal Chem 78:3084–3089. doi:10.1021/ac0519460

    CAS  Article  Google Scholar 

  13. 13.

    de Mello AJ (2003) Seeing single molecules. Lab Chip 3:29N–34N

    Article  Google Scholar 

  14. 14.

    Whitesides G (2006) The origins and the future of microfluidics. Nature 442:368–373. doi:10.1038/nature05058

    CAS  Article  Google Scholar 

  15. 15.

    Neuži P, Giselbrecht S, Länge K, Huang TJ, Manz A (2012) Revisiting lab-on-a-chip technology for drug discovery. Nat Rev Drug Discov 11:620–632. doi:10.1038/nrd3799

    Article  Google Scholar 

  16. 16.

    Nge PN, Rogers CI, Woolley AT (2013) Advances in microfluidic materials, functions, integration, and applications. Chem Rev 113:2550–2583. doi:10.1021/cr300337x

    CAS  Article  Google Scholar 

  17. 17.

    Lin JH, Tseng WL (2014) Design of two and three input molecular logic gates using non-Watson-Crick base pairing-based molecular beacons. Analyst 139:1436–1441. doi:10.1039/c3an02298f

    CAS  Article  Google Scholar 

  18. 18.

    Xianyu Y, Wang Z, Sun J, Wang X, Jiang X (2014) Colorimetric logic gates through molecular recognition and plasmonic nanoparticles. Small 10:4833–4838. doi:10.1002/smll.201400479

    CAS  Article  Google Scholar 

  19. 19.

    Margulies D, Melman G, Shanzer A (2005) Fluorescein as a model molecular calculator with reset capability. Nat Mater 4:768–771. doi:10.1038/nmat1469

    CAS  Article  Google Scholar 

  20. 20.

    Pischel U (2007) Chemical approaches to molecular logic elements for addition and subtraction. Angew Chem Int Ed Engl 46(22):4026–4040. doi:10.1002/anie.200603990

    CAS  Article  Google Scholar 

  21. 21.

    Margulies D, Felder CE, Melman G, Shanzer A (2007) A molecular keypad lock: a photochemical device capable of authorizing password entries. J Am Chem Soc 129:347–354. doi:10.1021/ja065317z

    CAS  Article  Google Scholar 

  22. 22.

    de Ruiter G, Motiei L, Choudhury J, Oded N, van der Boom ME (2010) Electrically addressable multistate volatile memory with flip-flop and flip-flap-flop logic circuits on a solid support. Angew Chem Int Ed Engl 49:4780–4783. doi:10.1002/anie.201000785

    Article  Google Scholar 

  23. 23.

    Rudchenko M, Taylor S, Pallavi P, Dechkovskaia A, Khan S, Butler VP Jr, Rudchenko S, Stojanovic MN (2013) Autonomous molecular cascades for evaluation of cell surfaces. Nat Nanotechnol 8(8):580–586. doi:10.1038/nnano.2013.142

    CAS  Article  Google Scholar 

  24. 24.

    Kou S, Lee HN, van Noort D, Swamy KM, Kim SH, Soh JH, Lee KM, Nam SW, Yoon J, Park S (2008) Fluorescent molecular logic gates using microfluidic devices. Angew Chem Int Ed Engl 47:872–876. doi:10.1002/anie.200703813

    CAS  Article  Google Scholar 

  25. 25.

    Cheow LF, Yobas L, Kwong D (2007) Digital microfluidics: droplet based logic gates. Appl Phys Lett 90:054107. doi:10.1063/1.2435607

    Article  Google Scholar 

  26. 26.

    Toepke MW, Abhyankar VV, Beebe DJ (2007) Microfluidic logic gates and timers. Lab Chip 7:1449–1453. doi:10.1039/B708764K

    CAS  Article  Google Scholar 

  27. 27.

    Zhou B, Wang L, Li S, Wang X, Hui YS, Wen W (2012) Universal logic gates via liquid-electronic hybrid divider. Lab Chip 12(24):5211–5217. doi:10.1039/c2lc40840f

    CAS  Article  Google Scholar 

  28. 28.

    Konry T, Walt DR (2009) Intelligent medical diagnostics via molecular logic. J Am Chem Soc 131:13232–13233. doi:10.1021/ja905125b

    CAS  Article  Google Scholar 

  29. 29.

    Mannerstedt K, Jansson AM, Weadge J, Hindsgaul O (2010) Angew Chem Int Ed 49, 8173

  30. 30.

    Mannerstedt K, Jansson AM, Weadge J, Hindsgaul O (2010) Small-molecule sensing: a direct enzyme-linked immunosorbent assay for the monosaccharide Kdo. Angew Chem Int Ed Engl 49:8173–8176. doi:10.1002/anie.201003435

    CAS  Article  Google Scholar 

  31. 31.

    Cohen N, Sabhachandani P, Golberg A, Konry T (2015) Approaching near real-time biosensing: microfluidic microsphere based biosensor for real-time analyte detection. Biosens Bioelectron 66:454–460. doi:10.1016/j.bios.2014.11.018

    CAS  Article  Google Scholar 

  32. 32.

    Feldmann M, Maini RN (2003) Lasker clinical medical research award. TNF defined as a therapeutic target for rheumatoid arthritis and other autoimmune diseases. Nat Med 9:1245–1250. doi:10.1038/nm939

    CAS  Article  Google Scholar 

  33. 33.

    Marques LJ, Zheng L, Poulakis N, Guzman J, Costabel U (1999) Pentoxifylline inhibits TNF-alpha production from human alveolar macrophages. Am J Respir Crit Care Med 159:508–511. doi:10.1164/ajrccm.159.2.9804085

    CAS  Article  Google Scholar 

  34. 34.

    Locksley RM, Killeen N, Lenardo MJ (2001) The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 104:487–501. doi:10.1016/S0092-8674(01)00237-9

    CAS  Article  Google Scholar 

Download references


We thank Ms. Vinny Motwani and Mr. Micah Amdur-Clark for their assistance in the preparation of Microfluidic devices for the experiments.

Author information



Corresponding author

Correspondence to Tania Konry.

Additional information

Pooja Sabhachandani and Noa Cohen contributed equally to this work.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sabhachandani, P., Cohen, N., Sarkar, S. et al. Microsphere-based immunoassay integrated with a microfluidic network to perform logic operations. Microchim Acta 182, 1835–1840 (2015). https://doi.org/10.1007/s00604-015-1518-4

Download citation


  • Molecular logic gates
  • Boolean logic operations
  • Microfluidics
  • TNF -α
  • Anti-TNF-α
  • Immunoassay
  • Point-of-care diagnostics