Advertisement

Microchimica Acta

, Volume 182, Issue 9–10, pp 1835–1840 | Cite as

Microsphere-based immunoassay integrated with a microfluidic network to perform logic operations

  • Pooja Sabhachandani
  • Noa Cohen
  • Saheli Sarkar
  • Tania KonryEmail author
Original Paper

Abstract

Lab on a chip (LOC) intelligent diagnostics can be described by molecular logic-based circuits. We report on the development of an LOC approach with logic capability for screening combinations of antigen and antibody in the same sample. A microsphere-based immunoassay was integrated with a microfluidic network device to perform the logic operations AND and INHIBIT. Using the clinically relevant biomarkers TNF-α cytokine and anti-TNF-α antibody, we obtained a fluorescent output in the presence of both inputs. This results in an AND operation, while the presence of only one specific input results in a different fluorescent signal, thereby indicating the INHIBIT operation. This approach demonstrates the effective use of molecular logic computation for developing portable, point-of-care technologies for diagnostic purposes due to fast detection times, minimal reagent consumption and low costs. This model system may be further expanded to screening of multiple disease markers, combinatorial logic applications, and developing “smart” sensors and therapeutic technologies.

Graphical Abstract

We describe an integrated multiplexed microsphere based-immunoassay on a microfluidic platform to perform simple Boolean logic operations for screening combinations of antigen and antibody in a biological sample. Our model system yielded AND and INHIBIT functionalities using the clinically relevant biomarkers TNF-alpha and anti-TNF-alpha antibody.

Keywords

Molecular logic gates Boolean logic operations Microfluidics TNF -α Anti-TNF-α Immunoassay Point-of-care diagnostics 

Notes

Acknowledgments

We thank Ms. Vinny Motwani and Mr. Micah Amdur-Clark for their assistance in the preparation of Microfluidic devices for the experiments.

References

  1. 1.
    Dittrich PS, Manz A (2006) Lab-on-a-chip: microfluidics in drug discovery. Nat Rev Drug Discov 5:210–218. doi: 10.1038/nrd1985 CrossRefGoogle Scholar
  2. 2.
    Kovarik ML, Ornoff DM, Melvin AT, Dobes NC, Wang Y, Dickinson AJ, Gach PC, Shah PK (2013) Allbritton NL (2013) Micro total analysis systems: fundamental advances and applications in the laboratory, clinic, and field. Anal Chem 85(2):451–472. doi: 10.1021/ac3031543 CrossRefGoogle Scholar
  3. 3.
    Elvira KS, Casadevall i Solvas X, Wootton RC, deMello AJ (2013) The past, present and potential for microfluidic reactor technology in chemical synthesis. Nat Chem 5:905–915. doi: 10.1038/nchem.1753 CrossRefGoogle Scholar
  4. 4.
    King KR, Wang S, Irimia D, Jayaraman A, Toner M, Yarmush ML (2007) A high-throughput microfluidic real-time gene expression living cell array. Lab Chip 7:77–85. doi: 10.1039/B612516F CrossRefGoogle Scholar
  5. 5.
    Brouzes E, Medkova M, Savenelli N, Marran D, Twardowski M, Hutchison JB, Rothberg JM, Link DR, Perrimon N, Samuels ML (2009) Droplet microfluidic technology for single-cell high-throughput screening. Proc Natl Acad Sci U S A 106:14195–14200. doi: 10.1073/pnas.0903542106 CrossRefGoogle Scholar
  6. 6.
    Eastburn DJ, Sciambi A, Abate AR (2013) Ultrahigh-throughput Mammalian single-cell reverse-transcriptase polymerase chain reaction in microfluidic drops. Anal Chem 85:8016–8021. doi: 10.1021/ac402057q CrossRefGoogle Scholar
  7. 7.
    Warkiani ME, Khoo BL, Tan DS, Bhagat AA, Lim WT, Yap YS, Lee SC, Soo RA, Han J, Lim CT (2014) An ultra-high-throughput spiral microfluidic biochip for the enrichment of circulating tumor cells. Analyst 139:3245–3255. doi: 10.1039/c4an00355a CrossRefGoogle Scholar
  8. 8.
    Najah M, Calbrix R, Mahendra-Wijaya IP, Beneyton T, Griffiths AD, Drevelle A (2014) Droplet-based microfluidics platform for ultra-high-throughput bioprospecting of cellulolytic microorganisms. Chem Biol 21(12):1722–1732. doi: 10.1016/j.chembiol.2014.10.020 CrossRefGoogle Scholar
  9. 9.
    Mao X, Huang TJ (2012) Exploiting mechanical biomarkers in microfluidics. Lab Chip 12:4006–4009. doi: 10.1039/C2LC90100E CrossRefGoogle Scholar
  10. 10.
    Golberg A, Linshiz G, Kravets I, Stawski N, Hillson NJ, Yarmush ML, Marks RS, Konry T (2014) Cloud-enabled microscopy and droplet microfluidic platform for specific detection of Escherichia coli in water. PLoS ONE 9(1):e86341. doi: 10.1371/journal.pone.0086341 CrossRefGoogle Scholar
  11. 11.
    Hughes AJ, Herr AE (2012) Microfluidic western blotting. Proc Natl Acad Sci U S A 109:21450–21455. doi: 10.1073/pnas.1207754110 CrossRefGoogle Scholar
  12. 12.
    Marcus JS, Anderson WF, Quake SR (2006) Microfluidic single-cell mRNA isolation and analysis. Anal Chem 78:3084–3089. doi: 10.1021/ac0519460 CrossRefGoogle Scholar
  13. 13.
    de Mello AJ (2003) Seeing single molecules. Lab Chip 3:29N–34NCrossRefGoogle Scholar
  14. 14.
    Whitesides G (2006) The origins and the future of microfluidics. Nature 442:368–373. doi: 10.1038/nature05058 CrossRefGoogle Scholar
  15. 15.
    Neuži P, Giselbrecht S, Länge K, Huang TJ, Manz A (2012) Revisiting lab-on-a-chip technology for drug discovery. Nat Rev Drug Discov 11:620–632. doi: 10.1038/nrd3799 CrossRefGoogle Scholar
  16. 16.
    Nge PN, Rogers CI, Woolley AT (2013) Advances in microfluidic materials, functions, integration, and applications. Chem Rev 113:2550–2583. doi: 10.1021/cr300337x CrossRefGoogle Scholar
  17. 17.
    Lin JH, Tseng WL (2014) Design of two and three input molecular logic gates using non-Watson-Crick base pairing-based molecular beacons. Analyst 139:1436–1441. doi: 10.1039/c3an02298f CrossRefGoogle Scholar
  18. 18.
    Xianyu Y, Wang Z, Sun J, Wang X, Jiang X (2014) Colorimetric logic gates through molecular recognition and plasmonic nanoparticles. Small 10:4833–4838. doi: 10.1002/smll.201400479 CrossRefGoogle Scholar
  19. 19.
    Margulies D, Melman G, Shanzer A (2005) Fluorescein as a model molecular calculator with reset capability. Nat Mater 4:768–771. doi: 10.1038/nmat1469 CrossRefGoogle Scholar
  20. 20.
    Pischel U (2007) Chemical approaches to molecular logic elements for addition and subtraction. Angew Chem Int Ed Engl 46(22):4026–4040. doi: 10.1002/anie.200603990 CrossRefGoogle Scholar
  21. 21.
    Margulies D, Felder CE, Melman G, Shanzer A (2007) A molecular keypad lock: a photochemical device capable of authorizing password entries. J Am Chem Soc 129:347–354. doi: 10.1021/ja065317z CrossRefGoogle Scholar
  22. 22.
    de Ruiter G, Motiei L, Choudhury J, Oded N, van der Boom ME (2010) Electrically addressable multistate volatile memory with flip-flop and flip-flap-flop logic circuits on a solid support. Angew Chem Int Ed Engl 49:4780–4783. doi: 10.1002/anie.201000785 CrossRefGoogle Scholar
  23. 23.
    Rudchenko M, Taylor S, Pallavi P, Dechkovskaia A, Khan S, Butler VP Jr, Rudchenko S, Stojanovic MN (2013) Autonomous molecular cascades for evaluation of cell surfaces. Nat Nanotechnol 8(8):580–586. doi: 10.1038/nnano.2013.142 CrossRefGoogle Scholar
  24. 24.
    Kou S, Lee HN, van Noort D, Swamy KM, Kim SH, Soh JH, Lee KM, Nam SW, Yoon J, Park S (2008) Fluorescent molecular logic gates using microfluidic devices. Angew Chem Int Ed Engl 47:872–876. doi: 10.1002/anie.200703813 CrossRefGoogle Scholar
  25. 25.
    Cheow LF, Yobas L, Kwong D (2007) Digital microfluidics: droplet based logic gates. Appl Phys Lett 90:054107. doi: 10.1063/1.2435607 CrossRefGoogle Scholar
  26. 26.
    Toepke MW, Abhyankar VV, Beebe DJ (2007) Microfluidic logic gates and timers. Lab Chip 7:1449–1453. doi: 10.1039/B708764K CrossRefGoogle Scholar
  27. 27.
    Zhou B, Wang L, Li S, Wang X, Hui YS, Wen W (2012) Universal logic gates via liquid-electronic hybrid divider. Lab Chip 12(24):5211–5217. doi: 10.1039/c2lc40840f CrossRefGoogle Scholar
  28. 28.
    Konry T, Walt DR (2009) Intelligent medical diagnostics via molecular logic. J Am Chem Soc 131:13232–13233. doi: 10.1021/ja905125b CrossRefGoogle Scholar
  29. 29.
    Mannerstedt K, Jansson AM, Weadge J, Hindsgaul O (2010) Angew Chem Int Ed 49, 8173Google Scholar
  30. 30.
    Mannerstedt K, Jansson AM, Weadge J, Hindsgaul O (2010) Small-molecule sensing: a direct enzyme-linked immunosorbent assay for the monosaccharide Kdo. Angew Chem Int Ed Engl 49:8173–8176. doi: 10.1002/anie.201003435 CrossRefGoogle Scholar
  31. 31.
    Cohen N, Sabhachandani P, Golberg A, Konry T (2015) Approaching near real-time biosensing: microfluidic microsphere based biosensor for real-time analyte detection. Biosens Bioelectron 66:454–460. doi: 10.1016/j.bios.2014.11.018 CrossRefGoogle Scholar
  32. 32.
    Feldmann M, Maini RN (2003) Lasker clinical medical research award. TNF defined as a therapeutic target for rheumatoid arthritis and other autoimmune diseases. Nat Med 9:1245–1250. doi: 10.1038/nm939 CrossRefGoogle Scholar
  33. 33.
    Marques LJ, Zheng L, Poulakis N, Guzman J, Costabel U (1999) Pentoxifylline inhibits TNF-alpha production from human alveolar macrophages. Am J Respir Crit Care Med 159:508–511. doi: 10.1164/ajrccm.159.2.9804085 CrossRefGoogle Scholar
  34. 34.
    Locksley RM, Killeen N, Lenardo MJ (2001) The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 104:487–501. doi: 10.1016/S0092-8674(01)00237-9 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2015

Authors and Affiliations

  • Pooja Sabhachandani
    • 1
  • Noa Cohen
    • 1
  • Saheli Sarkar
    • 1
  • Tania Konry
    • 1
    Email author
  1. 1.Department of Pharmaceutical Sciences, School of Pharmacy, Bouve’ College of Health SciencesNortheastern UniversityBostonUSA

Personalised recommendations