Skip to main content
Log in

Aptamer-based fluorescent solid-phase thrombin assay using a silver-coated glass substrate and signal amplification by glucose oxidase

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We describe an aptamer-based solid-state biosensor for the fluorometric determination of thrombin. The surface of silver-coated glass was modified with the thrombin-binding aptamer 1 (TBA 1) of the sequence 5′-HS-TTT TTT TTT TTT TTT GGT TGG TGT GGT TGG-3′. A second (and biotinylated) thrombin -binding aptamer (TBA 2) with the sequence 5′-biotin-AGT CCG TGG TAG GGC AGG TTG GGG TGA CT-3′ was applied as the signaling aptamer. Following binding of thrombin by TBA 1 on the surface, TBA 2 is added and then binds to the thrombin on the surface of the silver-coated glass to form the thrombin-aptamer complex. The biotin groups on TBA 2 are then coated with streptavidin, and biotin-labeled glucose oxidase (biotin-GOx) is added to bind to streptavidin. The quantity of GOx immobilized in this way is directly related to the quantity of thrombin bound on the surface. Following cleavage of the aptamer with DNase I, glucose is added and oxidized by GOx to yield H2O2. Horseradish peroxidase is added and causes the oxidation of 3-p-hydroxyphenylpropanoic acid to yield a fluorescent product. The intensity of the blue fluorescence is directly related to the thrombin concentration in the 300 pM to 6500 pM range, and the detection limit is as low as 82 pM. The assay has good selectivity and practicability.

A fluorescent assay was developed for determination of thrombin by using an aptamer immobilized on the surface of silver-coated glass and by exploiting hydrolysis by DNase I and amplification by glucose oxidase

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Holland C, Henry A, Whinna H, Church F (2000) Effect of oligodeoxynucleotide thrombin aptamer on thrombin inhibition by heparin cofactor II and antithrombin. FEBS Lett 484(2):87–91

    Article  CAS  Google Scholar 

  2. Chang H, Tang L, Wang Y, Jiang J, Li J (2010) Graphene fluorescence resonance energy transfer aptasensor for the thrombin detection. Anal Chem 82:2341–2346

    Article  CAS  Google Scholar 

  3. Centi S, Tombelli S, Minunni M, Mascini M (2007) Analytical performances of aptamer-based sensing for thrombin detection. Anal Chem 79:1466

    Article  CAS  Google Scholar 

  4. Nierodzik M, Karpatkin S (2006) Thrombin induces tumor growth, metastasis, and angiogenesis: Evidence for a thrombin-regulated dormant tumor phenotype. Cancer Cell 10:355

    Article  CAS  Google Scholar 

  5. Ellington A, Szostak J (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822

    Article  CAS  Google Scholar 

  6. Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510

    Article  CAS  Google Scholar 

  7. Hu J, Wang T, Kim J, Shannon C, Easley C (2012) Quantitation of femtomolar protein levels via direct readout with the electrochemical proximity assay. J Am Chem Soc 134:7066–7072

    Article  CAS  Google Scholar 

  8. Zhang H, Shuang S, Sun L, Chen A, Qin Y, Dong C (2014) Label-free aptasensor for thrombin using a glassy carbon electrode modified with a graphene-porphyrin composite. Microchim Acta 181:189–196

    Article  CAS  Google Scholar 

  9. Liu X, Wang F, Aizen R, Yehezkeli O, Willner I (2013) Graphene oxide / nucleic-acid-stabilized silver nanoclusters: functional hybrid materials for optical aptamer sensing and multiplexed analysis of pathogenic DNAs. J Am Chem Soc 135:11832–11839

    Article  CAS  Google Scholar 

  10. Xu Z, Huang X, Dong C, Ren J (2014) Fluorescence correlation spectroscopy of gold nanoparticles, and its application to an aptamer-based homogeneous thrombin assay. Microchim Acta 181:723–730

    Article  CAS  Google Scholar 

  11. Chen Z, Tan Y, Zhang C, Yin L, Ma H, Ye N, Qiang H, Lin YQ (2014) A colorimetric aptamer biosensor based on cationic polymer and gold nanoparticles for the ultrasensitive detection of thrombin. Biosens Bioelectron 56:46–50

    Article  CAS  Google Scholar 

  12. Hu P, Han L, Zhu C, Dong S (2013) Nanoreactors: a novel biosensing platform for protein assay. Chem Commun 49:1705

    Article  CAS  Google Scholar 

  13. Hu J, Zheng P, Jiang J, Shen G, Yu R, Liu G (2009) Electrostatic interaction based approach to thrombin detection by surface-enhanced Raman spectroscopy. Anal Chem 81:87–93

    Article  CAS  Google Scholar 

  14. Zhou W, Halpern A, Seefeld T, Corn R (2012) Near infrared surface plasmon resonance phase imaging and nanoparticle-enhanced surface plasmon resonance phase imaging for ultrasensitive protein and DNA biosensing with oligonucleotide and aptamer microarrays. Anal Chem 84:440–445

    Article  CAS  Google Scholar 

  15. He P, Liu L, Qiao W, Zhang S (2014) Ultrasensitive detection of thrombin using surface plasmon resonance and quartz crystal microbalance sensors by aptamer-based rolling circle amplification and nanoparticle signal enhancement. Chem Commun 50:1481

    Article  CAS  Google Scholar 

  16. Chen H, Yuan F, Wang S, Xu J, Zhang Y, Wang L (2013) Aptamer-based sensing for thrombin in red region via fluorescence resonant energy transfer between NaYF4:Yb, Er upconversion nanoparticles and gold nanorods. Biosens Bioelectron 48:19–25

    Article  CAS  Google Scholar 

  17. Li N, Ho C (2008) Aptamer-based optical probes with separated molecular recognition and signal transduction modules. J Am Chem Soc 130:2380–2381

    Article  CAS  Google Scholar 

  18. Zhang D, Lu M, Wang H (2011) Fluorescence anisotropy analysis for mapping aptamer-protein interaction at the single nucleotide level. J Am Chem Soc 133:9188–9191

    Article  CAS  Google Scholar 

  19. Wooten M, Karra S, Zhang M, Gorski W (2014) On the direct electron transfer, sensing, and enzyme activity in the glucose oxidase/carbon nanotubes system. Anal Chem 86:752–757

    Article  CAS  Google Scholar 

  20. Rasmussen M, West R, Burgess J, Lee I, Scherson D (2011) Bifunctional trehalose anode incorporating two covalently linked enzymes acting in series. Anal Chem 83:7408–7411

    Article  CAS  Google Scholar 

  21. Yi Y, Deng J, Zhang Y, Li H, Yao S (2013) Label-free Si quantum dots as photoluminescence probes for glucose detection. Chem Commun 49:612

    Article  CAS  Google Scholar 

  22. Fang M, Grant P, McShane M, Sukhorukov G, Golub V, Lvov Y (2002) Magnetic Bio/Nanoreactor with multilayer shells of glucose oxidase and inorganic nanoparticles. Langmuir 18:6338–6344

    Article  CAS  Google Scholar 

  23. Ornatska M, Sharpe E, Andreescu D, Andreescu S (2011) Paper bioassay based on ceria nanoparticles as colorimetric probes. Anal Chem 83:4273–4280

    Article  CAS  Google Scholar 

  24. Lorenzo L, Rica R, Álvarez-Puebla R, Liz-Marzán L, Stevens M (2012) Plasmonic nanosensors with inverse sensitivity by means of enzyme-guided crystal growth. Nat Mater 11:604–607

    Article  Google Scholar 

  25. Singh A, Park S, Yang H (2013) Glucose-oxidase label-based redox cycling for an incubation period-free electrochemical immunosensor. Anal Chem 85:4863–4868

    Article  CAS  Google Scholar 

  26. Baur J, Gondran C, Holzinger M, Defrancq E, Perrot H, Cosnier S (2010) Label-free femtomolar detection of target DNA by impedimetric DNA sensor based on poly(pyrrole-nitrilotriacetic acid) film. Anal Chem 82:1066–1072

    Article  CAS  Google Scholar 

  27. Zhang H, Zhu Z, Zeng Z, Ling L (2014) Sequence-specific recognition of single-stranded DNA using atomic absorption spectrometry. J Anal At Spectrom 29:1591

    Article  CAS  Google Scholar 

  28. Lee J, Lytton-Jean A, Hurst S, Mirkin C (2007) Silver nanoparticle-oligonucleotide conjugates based on DNA with triple cyclic disulfide moieties. Nano Lett 7:2112–2115

    Article  CAS  Google Scholar 

  29. Lukomsk J, Malicka J, Gryczynski I, Leonenko Z, Lakowicz JR (2005) Fluorescence enhancement of fluorophores tethered to different sized silver colloids deposited on glass substrate. Biopolymers 77:31–37

    Article  Google Scholar 

  30. Fu Y, Lakowicz J (2006) Enhanced fluorescence of Cy5-labeled DNA tethered to silver island films: fluorescence images and time-resolved studies using single-molecule spectroscopy. Anal Chem 78:6238–6245

    Article  CAS  Google Scholar 

  31. Braun G, Lee S, Dante M, Nguyen T, Moskovits M, Reich N (2007) Surface-enhanced Raman spectroscopy for DNA detection by nanoparticle assembly onto smooth metal films. J Am Chem Soc 129:6379

    Google Scholar 

  32. Fan X, Li H, Zhao J, Lin F, Zhang L, Zhang Y, Yao S (2012) A novel label-free fluorescent sensor for the detection of potassium ion based on DNAzyme. Talanta 89:57–62

    Article  CAS  Google Scholar 

  33. Jiang C, Zhao T, Li S, Gao N, Xu Q (2013) Highly sensitive two-photon sensing of thrombin in serum using aptamers and silver nanoparticles. ACS Appl Mater Interfaces 5:10853–10857

    Article  CAS  Google Scholar 

  34. Zhao W, Lam J, Chiuman W, Brook M, Li Y (2008) Enzymatic cleavage of nucleic acids on gold nanoparticles: a generic platform for facile colorimetric biosensors. Small 4(6):810–816

    Article  CAS  Google Scholar 

  35. Sun A, Jia F, Zhang Y, Wang X (2015) Gold nanocluster-encapsulated glucoamylase as a biolabel for sensitive detection of thrombin with glucometer readout. Microchim Acta. doi:10.1007/s00604-014-1440-1

    Google Scholar 

Download references

Acknowledgments

The work was supported by National Natural Science Foundation of China (No: 21375153), the Fundamental Research Funds for the Central Universities (No: 13lgzd05) and open project of Beijing National Laboratory for Molecular Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liansheng Ling.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 169 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Ling, L. Aptamer-based fluorescent solid-phase thrombin assay using a silver-coated glass substrate and signal amplification by glucose oxidase. Microchim Acta 182, 1849–1854 (2015). https://doi.org/10.1007/s00604-015-1515-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-015-1515-7

Keywords

Navigation