Skip to main content
Log in

Solid phase extraction of antidepressant drugs amitriptyline and nortriptyline from plasma samples using core-shell nanoparticles of the type Fe3O4@ZrO2@N- cetylpyridinium, and their subsequent determination by HPLC with UV detection

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The solid phase extraction (SPE) is described for preconcentration of the antidepressant drugs amitriptyline and nortriptyline prior to their determination by HPLC with UV detection. It is based on the use of water-dispersible core-shell nanoparticles (NPs) of the Fe3O4@ZrO2@N-cetylpyridinium type. The positively charged surfactant N-cetylpyridinium forms mixed aggregates with the drugs on the surface of the core-shell and thereby improves the adsorption of amitriptyline and nortriptyline through hydrophobic and/or ionic interactions. Their extraction depends on the type and amount of surfactant, sample pH, extraction time, desorption conditions, sample volume and amount of NPs that were optimized by application of experimental design. The enrichment factors are 220 and 250, respectively, for amitriptyline and nortriptyline, and the detection limits are 0.04 and 0.08 ng·mL‾1. This protocol enables accurate and precise quantification of the two drugs in complex and low content samples. It was applied to the determination of the two drugs in plasma samples with relative recoveries in the range from 89 to 105 % and RSDs less than 4 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bose D, Durgbanshi A, Martinavarro-Domínguez A, Capella-Peiró M-E, Carda-Broch S, Esteve-Romero J, Gil-Agustí M (2005) Amitriptyline and nortriptyline serum determination by micellar liquid chromatography. J Pharmacol Toxicol Methods 52:323

    Article  CAS  Google Scholar 

  2. Almudever P, Peris J-E, Garrigues T, Diez O, Melero A, Alos M (2010) Quantification of nortriptyline in plasma by HPLC and fluorescence detection. J Chromatogr B 878:841

    Article  CAS  Google Scholar 

  3. Kirchherr H, Kühn-Velten WN (2006) Quantitative determination of forty-eight antidepressants and antipsychotics in human serum by HPLC tandem mass spectrometry: A multi-level, single-sample approach. J Chromatogr B 843:100

    Article  CAS  Google Scholar 

  4. Farag RS, Darwish MZ, Fathy WM, Hammad HA (2013) New HPLC method to detect amitriptyline in the blood of rats on combination treatment. Int J Chem Anal Sci 4:120

    Article  CAS  Google Scholar 

  5. Abedi H, Ebrahimzadeh H, Ghasemi JB (2014) Solid phase headspace microextraction of tricyclic antidepressants using a directly prepared nanocomposite consisting of graphene, CTAB and polyaniline. Microchim Acta 182:663

    Google Scholar 

  6. Shen Y, Zhu R-H, Li H-D, Liu Y-W, Xu P (2010) Validated LC–MS (ESI) assay for the simultaneous determination of amitriptyline and its metabolite nortriptyline in rat plasma: Application to a pharmacokinetic comparison. J Pharm Biomed Anal 53:735

    Article  CAS  Google Scholar 

  7. Taha EA, Soilman SM, Abdellatef HE, Ayad MM (2002) Colorimetric methods for the determination of some tricyclic antidepressant drugs in their pure and dosage forms. Microchim Acta 140:175

    Article  CAS  Google Scholar 

  8. Theodoridis G, Koster EHM, Jong GJD (2000) Solid-phase microextraction for the analysis of biological samples. J Chromatogr B 745:49

    Article  CAS  Google Scholar 

  9. Augusto F, Carasek E, Costa Silva RG, Regina Rivellino S, Domingues Batista A, Martendal E (2010) New sorbents for extraction and microextraction techniques. J Chromatogr A 1217:2533

    Article  CAS  Google Scholar 

  10. Lord H, Pawliszyn J (2000) Microextraction of drugs. J Chromatogr A 902:17

    Article  CAS  Google Scholar 

  11. Duran A, Tuzen M, Soylak M (2009) Preconcentration of some trace elements via using multiwalled carbon nanotubes as solid phase extraction adsorbent. J Hazard Mater 169:466

    Article  CAS  Google Scholar 

  12. Tuzen M, Saygi KO, Usta C, Soylak M (2008) Pseudomonas aeruginosa immobilized multiwalled carbon nanotubes as biosorbent for heavy metal ions. Bioresource Technol 99:1563

    Article  CAS  Google Scholar 

  13. Tuzen M, Saygi KO, Soylak M (2008) Solid phase extraction of heavy metal ions in environmental samples on multiwalled carbon nanotubes. J Hazard Mater 152:632

    Article  CAS  Google Scholar 

  14. Tuzen M, Soylak M (2007) Multiwalled carbon nanotubes for speciation of chromium in environmental samples. J Hazard Mater 147:219

    Article  CAS  Google Scholar 

  15. Cantero M, Rubio S, Pérez-Bendito D (2006) Determination of alkylphenols and alkylphenol carboxylates in wastewater and river samples by hemimicelle-based extraction and liquid chromatography–ion trap mass spectrometry. J Chromatogr A 1120:260

    Article  CAS  Google Scholar 

  16. Merino F, Rubio S, Pérez-Bendito D (2003) Solid-phase extraction of amphiphiles based on mixed hemimicelle/admicelle formation: application to the concentration of benzalkonium surfactants in Sewage and River Water. Anal Chem 75:6799

    Article  CAS  Google Scholar 

  17. Li L, Huang Y, Wang Y, Wang W (2009) Hemimicelle capped functionalized carbon nanotubes-based nanosized solid-phase extraction of arsenic from environmental water samples. Anal Chim Acta 631:182

    Article  CAS  Google Scholar 

  18. Tavakoli M, Shemirani F, Hajimahmoodi M (2014) Magnetic mixed hemimicelles solid-phase extraction of three food colorants from real samples. Food Anal Methods 7:100

    Article  Google Scholar 

  19. Zhang Q, Yang F, Tang F, Zeng K, Wu K, Cai Q, Yao S (2010) Ionic liquid-coated Fe3O4 magnetic nanoparticles as an adsorbent of mixed hemimicelles solid-phase extraction for preconcentration of polycyclic aromatic hydrocarbons in environmental samples. Analyst 135:2426

    Article  CAS  Google Scholar 

  20. Zhao X, Shi Y, Cai Y, Mou S (2008) Cetylmethyammonium bromide-coated magnetic nanoparticles for the preconcentration of phenolic compounds from environmental water samples. Environ Sci Technol 42:1201

    Article  CAS  Google Scholar 

  21. Farajzadeh MA, Bahram M, Vardast MR, Bamorowat M (2011) Dispersive liquid-liquid microextraction for the analysis of three organophosphorus pesticides in real samples by high performance liquid chromatography-ultraviolet detection and its optimization by experimental design. Microchim Acta 172:465

    Article  CAS  Google Scholar 

  22. Stalikas C, Fiamegos Y, Sakkas V, Albanis T (2009) Developments on chemometric approaches to optimize and evaluate Microextraction. J Chromatogr A 1216:175

    Article  CAS  Google Scholar 

  23. Loong NC, Basri M, Fang LF, Fard Masoumi HR, Tripathy M, Abedi Karjiban R, Abdul-Malek E (2014) Comparison of Box–Behnken and central composite designs in optimization of fullerene loaded palm-based nano-emulsions for cosmeceutical application. Int Crop Prod 59:309

    Article  Google Scholar 

  24. Aziz-Zanjani M-O, Mehdinia A (2014) A review on procedures for the preparation of coatings for solid phase microextraction. Microchim Acta 181:1169

    Article  CAS  Google Scholar 

  25. Wierucka M, Biziuk M (2014) Application of magnetic nanoparticles for magnetic solid-phase extraction in preparing biological, environmental and food samples. Trends Anal Chem 59:50

    Article  CAS  Google Scholar 

  26. Røen BT, Sellevåg SR, Dybendal KE, Lundanes E (2014) Trace determination of primary nerve agent degradation products in aqueous soil extracts by on-line solid phase extraction-liquid chromatography-mass spectrometry using ZrO2 for enrichment. J Chromatogr A 1329:90

    Article  Google Scholar 

  27. Peng Z-T, Jiang L, Gong Y, Hu X-Z, Peng L-J, Feng Y-Q (2015) Preparation of mesoporous ZrO2-coated magnetic microsphere and its application in the multi-residue analysis of pesticides and PCBs in fish by GC-MS/MS. Talanta 132:118

    Article  CAS  Google Scholar 

  28. Zhao X, Li J, Shi Y, Cai Y, Mou S, Jiang G (2007) Determination of perflurinated compounds in wastewater and river water samples by mixed hemimicelle-based solid-phase extraction before liquid chromatography-electrospray tandem mass spectrometry detection. J Chromatogr A 1154:52

    Article  CAS  Google Scholar 

  29. Zhang S, Niu H, Cai Y, Shi Y (2010) Barium alginate caged Fe3O4@C18 magnetic nanoparticles for the pre-concentration of polycyclic aromatic hydrocarbons and phthalate esters from environmental water samples. Anal Chim Acta 665:167

    Article  CAS  Google Scholar 

  30. Liu Y, Huang Y, Liu J, Wang W, Liu G, Zhao R (2012) Superparamagnetic surface molecularly imprinted nanoparticles for water-soluble pefloxacin mesylate prepared via surface initiated atom transfer radical polymerization and its application in egg sample analysis. J Chromatogr A 1246:15

    Article  CAS  Google Scholar 

  31. Hussain S, Schönbichler SA, Güzel Y, Sonderegger H, Abel G, Rainer M, Huck CW, Bonn GK (2013) Solid-phase extraction of galloyl- and caffeoylquinic acids from natural sources (Galphimia glauca and Arnicae flos) using pure zirconium silicate and bismuth citrate powders as sorbents inside micro spin columns. J Pharm Biomed Anal 84:148

    Article  CAS  Google Scholar 

  32. Santos V, Zeni M, Bergmann CP, Hohemberger JM (2008) Correlation between thermal treatment and tetragonal/monoclinic nanostructured zirconia powder obtained by sol–gel process. Rev Adv Mater Sci 17:62

    CAS  Google Scholar 

  33. Kamankesh M, Mohammadi A, ModarresTehrani Z, Ferdowsi R, Hosseini H (2013) Dispersive liquid-liquid microextraction followed by high-performance liquid chromatography for determination of benzoate and sorbate in yogurt drinks and method optimization by central composite design. Talanta 109:46

    Article  CAS  Google Scholar 

  34. Zolgharnein J, Bagtash M, Asanjarani N (2014) Hybrid central composite design approach for simultaneous optimization of removal of alizarin red S and indigo carmine dyes using cetyltrimethylammonium bromide-modified TiO2 nanoparticles. J Environ Chem Eng 2:988

    Article  CAS  Google Scholar 

  35. Roosta M, Ghaedi M, Daneshfar A, Darafarin S, Sahraei R, Purkait MK (2014) Simultaneous ultrasound-assisted removal of sunset yellow and erythrosine by ZnS:Ni nanoparticles loaded on activated carbon: Optimization by central composite design. Ultrason Sonochem 21:1441

    Article  CAS  Google Scholar 

  36. Bavili Tabrizi A, Rezazadeh A (2012) Development of a dispersive liquid–liquid microextraction technique for the extraction and spectrofluorimetric determination of fluoxetine in pharmaceutical formulations and human urine. Adv Pharm Bull 2:157

    Google Scholar 

  37. Sarafraz-Yazdi A, Razavi N, Raouf-Yazdinejad S (2008) Separation and determination of amitriptyline and nortriptyline by dispersive liquid–liquid microextraction combined with gas chromatography flame ionization detection. Talanta 75:1293

    Article  Google Scholar 

  38. Ho TD, Joshi MD, Silver MA, Anderson JL (2012) Selective extraction of genotoxic impurities and structurally alerting compounds using polymeric ionic liquid sorbent coatings in solid-phase microextraction: alkyl halides and aromatics. J Chromatogr A 1240:29

    Article  CAS  Google Scholar 

  39. Fontanals N, Cormack PAG, Marcé RM, Borrull F (2010) Mixed-mode ion-exchange polymeric sorbents: dual-phase materials that improve selectivity and capacity. Trends Anal Chem 29:765

    Article  CAS  Google Scholar 

  40. Daneshfar A, Khezeli T (2015) Headspace solid phase microextraction of nicotine using thin layer chromatography plates modified with carbon dots. Microchim Acta 182:209

    Article  CAS  Google Scholar 

  41. Tapadia K, Shrivas K, Upadhyay LSB (2011) GC–MS coupled with hollow-fiber drop-to-drop solvent microextraction for determination of antidepressants drugs in human blood sample. Chromatographia 74:437

    Article  CAS  Google Scholar 

  42. Zheng M-M, Wang S-T, Hu W-K, Feng Y-Q (2010) In-tube solid-phase microextraction based on hybrid silica monolith coupled to liquid chromatography–mass spectrometry for automated analysis of ten antidepressants in human urine and plasma. J Chromatogr A 1217:7493

    Article  CAS  Google Scholar 

  43. Seidi S, Yamini Y, Rezazadeh M (2013) Combination of electromembrane extraction with dispersive liquid–liquid microextraction followed by gas chromatographic analysis as a fast and sensitive technique for determination of tricyclic antidepressants. J Chromatogr B 913:138

    Article  Google Scholar 

  44. Sarafraz-Yazdi A, Raouf-Yazdinejad S, Es’haghi Z (2007) Directly suspended droplet microextraction and analysis of amitriptyline and nortriptyline by GC. Chromatographia 66:613

    Article  CAS  Google Scholar 

  45. Shinozuka T, Terada M, Tanaka E (2006) Solid-phase extraction and analysis of 20 antidepressant drugs in human plasma by LC/MS with SSI method. Forensic Sci Int 162:108

    Article  CAS  Google Scholar 

  46. Bakkali A, Corta E, Ciria JI, Berrueta LA, Gallo B, Vicente F (1999) Solid-phase extraction with liquid chromatography and ultraviolet detection for the assay of antidepressant drugs in human plasma. Talanta 49:773

    Article  CAS  Google Scholar 

  47. Farajzadeh MA, Khorram P, Ghorbanpour H (2015) Simultaneous derivatization and solid-based disperser liquid–liquid microextraction for extraction and preconcentration of some antidepressants and an antiarrhythmic agent in urine and plasma samples followed by GC-FID. J Chromatogr B 983:55

    Article  Google Scholar 

  48. Ulrich S, Martens J (1997) Solid-phase microextraction with capillary gas–liquid chromatography and nitrogen-phosphorus selective dectection for the assay of antidepressant drugs in human plasma. J Chromatogr B 696:217

    Article  CAS  Google Scholar 

  49. Balίkovà M (1992) Selective system of identification and determination of antidepressants and neuroleptics in serum or plasma by solid-phase extraction followed by high-performance liquid chromatography with photodiode-array detection in analytical toxicology. J Chromatogr 581:75

    Article  Google Scholar 

  50. Papoutsis I, Khraiwesh A, Nikolaou P, Pistos C, Spiliopoulou C, Athanaselis S (2012) A fully validated method for the simultaneous determination of 11 antidepressant drugs in whole blood by gas chromatography–mass spectrometry. J Pharm Biomed Anal 70:557

    Article  CAS  Google Scholar 

  51. Gritti F, Guiochon G (2005) Separation mechanism of nortriptyline and amytriptyline in RPLC. J Chromatogr A 1090:39

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehrorang Ghaedi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 2.50 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zare, F., Ghaedi, M. & Daneshfar, A. Solid phase extraction of antidepressant drugs amitriptyline and nortriptyline from plasma samples using core-shell nanoparticles of the type Fe3O4@ZrO2@N- cetylpyridinium, and their subsequent determination by HPLC with UV detection. Microchim Acta 182, 1893–1902 (2015). https://doi.org/10.1007/s00604-015-1499-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-015-1499-3

Keywords

Navigation