Skip to main content
Log in

Gold nanocluster-encapsulated glucoamylase as a biolabel for sensitive detection of thrombin with glucometer readout

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

This article reports on a sensitive aptamer-based assay for thrombin. The assay includes the following steps: (a) a first thrombin-specific aptamer (P1) was immobilized on the surface of the wells of a microtiter plate via biotin-streptavidin interaction; (b) gold nanoclusters (GNCs) were used to cover the enzyme glucoamylase via a reverse micelle method; (c) the GNCs were then coated with the second aptamer (P2) via thiol chemistry; (d) addition of a solution containing thrombin to the well, and (e) subsequent addition of amylopectin. The glucoamylase in the GNC label catalytically hydrolyzes the amylopectin to form glucose which then is quantified with a glucometer. Under optimal conditions, the signal for glucose increases with the concentration of thrombin in range from 0.05 to 100 nM, and the detection limit is as low as 10 pM. The assay has a good repeatability and displays an intermediate precision of down to 11 %. Nonspecific adsorption was not observed in a series of analyses. The method was applied to the determination of thrombin in spiked serum samples, and the recoveries ranged from 94 to 110 %. The method is assumed to have a wide scope in that it may be extended to numerous other analytes for which appropriate aptamers are available.

An aptamer-based sandwich assay for thrombin was developed using aptamer-coated microwell and using glucoamylase coated with a gold nanocluster as the biolabel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ocana C, del Valle M (2014) A comparison of four protocol for the immobilization of an aptamer on graphite composite electrodes. Microchim Acta 181:355–363

    Article  CAS  Google Scholar 

  2. Di Cera E (2008) Thrombin. Mol Aspect Med 29:203–254

    Article  Google Scholar 

  3. Deng B, Lin Y, Wang C, Li F, Wang Z, Zhang H, Li X, Le X (2014) Aptamer binding assays for proteins: the thrombin example-a review. Anal Chim Acta 837:1–15

    Article  CAS  Google Scholar 

  4. Xu N, Wang Q, Lei J, Liu L, Ju H (2015) Label-free triple-helix aptamers as sensing platform for “signal-on” fluorescent detection of thrombin. Talanta 132:387–391

    Article  CAS  Google Scholar 

  5. Wang K, Liao J, Yang X, Zhao M, Chen M, Yao W, Tan W, Lan X (2015) A label-free aptasensor for highly sensitive detection of ATP and thrombin based on metal-enhanced PicoGreen fluorescence. Biosens Bioelectron 63:166–171

    Article  Google Scholar 

  6. Hu J, Wang T, Kim J, Shannon C, Easley C (2012) Quantitation of femtomolar protein levels via direct readout with the electrochemical proximity assay. J Am Chem Soc 134:7066–7072

    Article  CAS  Google Scholar 

  7. Gao P, Xia Y, Yang L, Ma T, Yang L, Guo Q, Huang S (2014) Aptasensor for adenosine triphosphate based on electrode-supported lipid bilayer memebrane. Microchim Acta 181:205–212

    Article  CAS  Google Scholar 

  8. Taleat Z, Khoshroo A, Mazloum-Ardakani M (2014) Screen-printed electrode for biosensing: a review (2008–2013). Microchim Acta 181:865–891

    Article  CAS  Google Scholar 

  9. Duan Y, Ning Y, Song Y, Deng L (2014) Fluorescent aptasensor for the determination of Salmonella typhimurium based on a graphene oxide platform. Microchim Acta 181:647–653

    Article  CAS  Google Scholar 

  10. Shangguan L, Zhu W, Xue Y, Liu S (2015) Construction of photoelectrochemical thrombin aptasensor via assembling multilayer of graphene-CdS nanocomposites. Biosens Bioelectron 64:611–617

    Article  CAS  Google Scholar 

  11. Baek S, Wark A, Lee H (2014) Dual nanoparticle amplified surface plasmon resonance detection of thrombin at substtomolar concentrations. Anal Chem 86:9824–9829

    Article  CAS  Google Scholar 

  12. Zhao W, Qin Z, Zhang C, Zhao M, Luo H (2014) A label-free double-amplification system for sensitive detection of single-stranded DNA and thrombin by liquid chromatography-mass spectrometry. Chem Commun 50:9846–9848

    Article  CAS  Google Scholar 

  13. Wang Y, Lu M, Zhu J, Tian S (2014) Wrapping DNA-gated mesoporous silica nanoparticles for quantitative monitoring of telomerase activity with glucometer readout. J Mater Chem B 2:5847–5853

    Article  CAS  Google Scholar 

  14. Fu X, Feng X, Xu K, Huang R (2014) A portable and quantitative enzyme immunoassay of neuron-specific enolase with a glucometer readout. Anal Method 6:2233–2238

    Article  CAS  Google Scholar 

  15. Hou L, Zhu C, Wu X, Chen G, Tang D (2014) Bioresponsive controlled release from mesoporous silica nanocontainers with glucometer readout. Chem Commun 50:1441–1443

    Article  CAS  Google Scholar 

  16. Fu L, Zhuang J, Lai W, Que X, Lu M, Tang D (2013) Portable and quantitative monitoring of heavy metal ions using DNAzyme-capped mesoporous silica nanoparticles with a glucometer readout. J Mater Chem B 1:6123–6128

    Article  CAS  Google Scholar 

  17. Zhang K, Wu J, Li Y, Wu Y, Huang T, Tang D (2014) Hollow nanogold microsphere-signalized flow immunodipstick for the sensitive determination of the neurotoxin brevetoxin B. Microchim Acta 181:1447–1454

    Article  CAS  Google Scholar 

  18. Tang D, Ren J (2008) In situ amplified electrochemical immunoassay for carcinoembryonic antigen using horseradish peroxidase-encapsulated nanogold hollow microspheres as labels. Anal Chem 80:8064–8070

    Article  CAS  Google Scholar 

  19. Liu B, Zhang B, Chen G, Tang D (2014) Biotin-avidin-conjugated metal sulfide nanoclusters for simultaneous electrochemical immunoassay of tetracycline and chloramphenicol. Microchim Acta 181:257–262

    Article  CAS  Google Scholar 

  20. Xu Z, Huang X, Dong C, Ren J (2014) Fluorescence correlation spectroscopy of gold nanoparticles, and its application to an aptamer-based homogeneous thrombin assay. Microchim Acta 181:723–730

    Article  CAS  Google Scholar 

  21. Zhang H, Shuang S, Sun L, Chen A, Qin Y, Dong C (2014) Label-free aptasensor for thrombin using a glassy carbon electrode modified with a graphene-porphyrin composite. Microchim Acta 181:189–196

    Article  CAS  Google Scholar 

  22. Wang X, Zhao Q (2012) A fluorescent sandwich assay for thrombin using aptamer modified magnetic beads and quantum dots. Microchim Acta 178:349–355

    Article  CAS  Google Scholar 

  23. Park J, Cho Y, Kang S, Lee E, Lee G, Hah S (2014) A colorimetric sandwich-type assay for sensitive thrombin detection based on enzyme-linked aptamer assay. Anal Biochem 462:10–12

    Article  CAS  Google Scholar 

  24. Sinha B, Ramulu T, Kim K, Venu R, Lee J, Kim C (2014) Planar Hall magnetoresistive aptasensor for thrombin detection. Biosens Bioelectron 59:140–144

    Article  CAS  Google Scholar 

  25. Cunningham J, Brenes N, Crooks R (2014) Paper electrochemical device for detection of DNA and thrombin by target-induced conformational switching. Anal Chem 86:6166–6170

    Article  CAS  Google Scholar 

  26. Yue Q, Shen T, Wang L, Xu S, Li H, Xue Q, Zhang Y, Gu X, Zhang S, Liu J (2014) A convenient sandwich assay of thrombin in biological media using nanoparticle-enhanced fluorescence polarization. Biosens Bioelectron 55:231–236

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (grant no.: 21405128) and the Research (Initial) Fund for the Doctoral Program of Xinxiang University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ai-Li Sun or Xuan-Nian Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, AL., Jia, FC., Zhang, YF. et al. Gold nanocluster-encapsulated glucoamylase as a biolabel for sensitive detection of thrombin with glucometer readout. Microchim Acta 182, 1169–1175 (2015). https://doi.org/10.1007/s00604-014-1440-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-014-1440-1

Keywords

Navigation