Skip to main content

Synthesis and analytical applications of molecularly imprinted polymers on the surface of carbon nanotubes: a review

Abstract

This review (with 142 references) summarize the state of the art in molecularly imprinting technology as applied to the surface of carbon nanotubes (CNTs) which result in so-called CNTs@MIPs. These nanomaterials offer a remedy to the flaws of traditional MIPs, such as poor site accessibility for templates, slow mass transfer and template leakage. They also are flexible in that different materials can be integrated with CNTs. Given the advantages of using CNT@MIPs, this technology has experienced rapid expansion, not the least because CNT@MIPs can be produced at low cost and by a variety of synthetic approaches. We summarize methods of, and recent advances in the synthesis of CNT@MIPs, and then highlight some representative applications. We also comment on their potential future developments and research directions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Abbreviations

2 or 4-VP:

2-or 4-vinylpyridine

AA:

Acrylic acid

AEP:

(p-acryloylaminophenyl)-{(4-aminophenyl)-diethyl ammonium}-ethylphosphate

AIBN:

Azo-bisisobutyronitrile

APS:

Ammonium persulfate

APTMS:

Aminopropyltrimethoxysilane

β-CD:

Beta-cyclodextrin

BDC:

N,N-diethyldithiocarbamate

BSA:

Bovine serum albumin

CLRP:

Controlled/living free radical polymerization

CNTs:

Carbon nanotubes

CNTs@MIPs:

Molecularly imprinted polymers on the surface of carbon nanotubes

CS:

Chitosan

CSDT:

Chitosan derivative

DMAc:

Dimethyl acetamide

DMF:

Dimethyl formamide

DMSO:

Dimethyl sulfoxide

DVB:

Divinylbenzene

ECL:

Electrochemiluminescence

EE:

Ethoxyethanol

EGDMA or EDMA:

Ethylene glycol dimethacrylate

FQs:

Fluoroquinolones

Ga(III):

Gallium(III)

MAA:

Methacrylic acid

MIM:

Molecularly imprinted membrane

MIPPy:

Molecular imprinted polypyrrole

MIPs:

Molecularly imprinted polymers

MIT:

Molecular imprinting technology

MTMOS:

Methyltrimethoxysilane

MWNTs:

Multiwalled carbon nanotubes

NNMBA:

N,N-methylenebisacrylamide

NPA:

4-nitrophenyl acrylate

OTA:

Ochratoxin A

PAMAM:

Polyamide amine

PEG:

Polyethylene glycol

PETRA:

Pentaerythritol triacrylate

PPy:

Polypyrrole

PTMOS:

phenyltrimethoxysilane

SPE:

Solid-phase extraction

SPME:

Solid phase micro extraction

SWNTs:

Single-walled carbon nanotubes

TCP:

2,4,6-Trichlorophenol

TEOS:

Tetraethylorthosilicate

THF:

Tetrahydrofuran

μ-SPP:

Micro-solid phase preconcentration

References

  1. 1.

    Hinterdorfer P, Dufrene YF (2006) Detection and localization of single molecular recognition events using atomic force microscopy. Nat Methods 3(5):347–355. doi:10.1038/nmeth871

    CAS  Google Scholar 

  2. 2.

    Ye L, Mosbach K (2008) Molecular imprinting: synthetic materials as substitutes for biological antibodies and receptors†. Chem Mater 20(3):859–868. doi:10.1021/cm703190w

    CAS  Google Scholar 

  3. 3.

    Wulff G, Sarhan A (1972) Über die Anwendung von enzymanalog gebauten Polymeren zur Racemattrennung. Angew Chem 84(8):364. doi:10.1002/ange.19720840838

    Google Scholar 

  4. 4.

    Vlatakis G, Andersson LI, Muller R, Mosbach K (1993) Drug assay using antibody mimics made by molecular imprinting. Nature 361(6413):645–647. doi:10.1038/361645a0

    CAS  Google Scholar 

  5. 5.

    Arshady R, Mosbach K (1981) Synthesis of substrate-selective polymers by host-guest polymerization. Die Makromol Chem 182(2):687–692. doi:10.1002/macp.1981.021820240

    CAS  Google Scholar 

  6. 6.

    Nicholls IA, Rosengren JP (2001) Molecular imprinting of surfaces. Bioseparation 10(6):301–305. doi:10.1023/a:1021541631063

    CAS  Google Scholar 

  7. 7.

    Wulff G (2002) Enzyme-like catalysis by molecularly imprinted polymers. Chem Rev 102(1):1–28. doi:10.1021/cr980039a

    CAS  Google Scholar 

  8. 8.

    Alexander C, Andersson HS, Andersson LI, Ansell RJ, Kirsch N, Nicholls IA, O’Mahony J, Whitcombe MJ (2006) Molecular imprinting science and technology: a survey of the literature for the years up to and including 2003. J Mol Recognit 19(2):106–180. doi:10.1002/jmr.760

    CAS  Google Scholar 

  9. 9.

    Chen L, Xu S, Li J (2011) Recent advances in molecular imprinting technology: current status, challenges and highlighted applications. Chem Soc Rev 40(5):2922–2942. doi:10.1039/c0cs00084a

    CAS  Google Scholar 

  10. 10.

    Díaz-Díaz G, Antuña-Jiménez D, Carmen Blanco-López M, Jesús Lobo-Castañón M, Miranda-Ordieres AJ, Tuñón-Blanco P (2012) New materials for analytical biomimetic assays based on affinity and catalytic receptors prepared by molecular imprinting. TrAC Trends Anal Chem 33:68–80. doi:10.1016/j.trac.2011.09.011

    Google Scholar 

  11. 11.

    Tan CJ, Tong YW (2007) Molecularly imprinted beads by surface imprinting. Anal Bioanal Chem 389(2):369–376. doi:10.1007/s00216-007-1362-4

    CAS  Google Scholar 

  12. 12.

    Ge Y, Turner AP (2008) Too large to fit? Recent developments in macromolecular imprinting. Trends Biotechnol 26(4):218–224. doi:10.1016/j.tibtech.2008.01.001

    CAS  Google Scholar 

  13. 13.

    Wang H, Zhao H, Quan X, Chen S (2011) Electrochemical determination of tetracycline using molecularly imprinted polymer modified carbon nanotube-gold nanoparticles electrode. Electroanalysis 23(8):1863–1869. doi:10.1002/elan.201100049

    CAS  Google Scholar 

  14. 14.

    Zhang Z, Yang X, Chen X, Zhang M, Luo L, Peng M, Yao S (2011) Novel magnetic bovine serum albumin imprinted polymers with a matrix of carbon nanotubes, and their application to protein separation. Anal Bioanal Chem 401(9):2855–2863. doi:10.1007/s00216-011-5373-9

    CAS  Google Scholar 

  15. 15.

    Nagata T, Goji S, Akamatsu K, Nawafune H, Matsui J (2012) Monodispersed molecularly imprinted polymer beads with enhanced atrazine retention ability synthesized with polymeric diluents. Anal Lett 45(9):977–985. doi:10.1080/00032719.2012.670786

    CAS  Google Scholar 

  16. 16.

    Fan L, Zhang Y, Li X, Luo C, Lu F, Qiu H (2012) Removal of alizarin red from water environment using magnetic chitosan with Alizarin Red as imprinted molecules. Colloids Surf, B 91:250–257. doi:10.1016/j.colsurfb.2011.11.014

    CAS  Google Scholar 

  17. 17.

    Xia YQ, Guo TY, Song MD, Zhang BH, Zhang BL (2006) Selective separation of quercetin by molecular imprinting using chitosan beads as functional matrix. React Funct Polym 66(12):1734–1740. doi:10.1016/j.reactfunctpolym.2006.08.001

    CAS  Google Scholar 

  18. 18.

    Song X, Li C, Xu R, Wang K (2012) Molecular-ion-imprinted chitosan hydrogels for the selective adsorption of silver(I) in aqueous solution. Ind Eng Chem Res 51(34):11261–11265. doi:10.1021/ie3010989

    CAS  Google Scholar 

  19. 19.

    Dai C, Liu C, Wei J, Hong H, Zhao Q (2010) Molecular imprinted macroporous chitosan coated mesoporous silica xerogels for hemorrhage control. Biomaterials 31(30):7620–7630. doi:10.1016/j.biomaterials.2010.06.049

    CAS  Google Scholar 

  20. 20.

    Gu JY, Zhang H, Yuan G, Chen LR, Xu XJ (2011) Surface-initiated molecularly imprinted polymeric column: in situ synthesis and application for semi-preparative separation by high performance liquid chromatography. J Chromatogr A 1218(45):8150–8155. doi:10.1016/j.chroma.2011.09.019

    CAS  Google Scholar 

  21. 21.

    Zhao D, Jia J, Yu X, Sun X (2011) Preparation and characterization of a molecularly imprinted polymer by grafting on silica supports: a selective sorbent for patulin toxin. Anal Bioanal Chem 401(7):2259–2273. doi:10.1007/s00216-011-5282-y

    CAS  Google Scholar 

  22. 22.

    Zhang W, Qin L, He XW, Li WY, Zhang YK (2009) Novel surface modified molecularly imprinted polymer using acryloyl-beta-cyclodextrin and acrylamide as monomers for selective recognition of lysozyme in aqueous solution. J Chromatogr A 1216(21):4560–4567. doi:10.1016/j.chroma.2009.03.056

    CAS  Google Scholar 

  23. 23.

    Xia YQ, Guo TY, Zhao HL, Song MD, Zhang BH, Zhang BL (2009) Protein recognition onto silica particles using chitosan as intermedium substrate. J Biomed Mater Res, Part A 90A(2):326–332. doi:10.1002/jbm.a.32084

    CAS  Google Scholar 

  24. 24.

    Moreira FTC, Dutra RAF, Noronha JPC, Sales MGF (2011) Myoglobin-biomimetic electroactive materials made by surface molecular imprinting on silica beads and their use as ionophores in polymeric membranes for potentiometric transduction. Biosens Bioelectron 26(12):4760–4766. doi:10.1016/j.bios.2011.05.045

    CAS  Google Scholar 

  25. 25.

    Hua Z, Zhou S, Zhao M (2009) Fabrication of a surface imprinted hydrogel shell over silica microspheres using bovine serum albumin as a model protein template. Biosens Bioelectron 25(3):615–622. doi:10.1016/j.bios.2009.01.027

    CAS  Google Scholar 

  26. 26.

    Fukazawa K, Li Q, Seeger S, Ishihara K (2013) Direct observation of selective protein capturing on molecular imprinting substrates. Biosens Bioelectron 40(1):96–101. doi:10.1016/j.bios.2012.06.033

    CAS  Google Scholar 

  27. 27.

    Fukazawa K, Ishihara K (2009) Fabrication of a cell-adhesive protein imprinting surface with an artificial cell membrane structure for cell capturing. Biosens Bioelectron 25(3):609–614. doi:10.1016/j.bios.2009.02.034

    CAS  Google Scholar 

  28. 28.

    Chang L, Li Y, Chu J, Qi J, Li X (2010) Preparation of core-shell molecularly imprinted polymer via the combination of reversible addition-fragmentation chain transfer polymerization and click reaction. Anal Chim Acta 680(1–2):65–71. doi:10.1016/j.aca.2010.09.017

    CAS  Google Scholar 

  29. 29.

    Barahona F, Turiel E, Cormack PAG, Martin-Esteban A (2010) Chromatographic performance of molecularly imprinted polymers: core-shell microspheres by precipitation polymerization and grafted MIP films via iniferter-modified silica beads. J Polym Sci, Part A: Polym Chem 48(5):1058–1066. doi:10.1002/pola.23860

    CAS  Google Scholar 

  30. 30.

    Dramou P, Xiao D, He H, Liu T, Zou W (2013) Loading behavior of gatifloxacin in urine and lake water on a novel magnetic molecularly imprinted polymer used as extraction sorbent with spectrophotometric analysis. J Sep Sci 36(5):898–906. doi:10.1002/jssc.201200831

    CAS  Google Scholar 

  31. 31.

    Wen T, Xue C, Li Y, Wang Y, Wang R, Hong J, Zhou X, Jiang H (2012) Reduced graphene oxide-platinum nanoparticles composites based imprinting sensor for sensitively electrochemical analysis of 17 beta-estradiol. J Electroanal Chem 682:121–127. doi:10.1016/j.jelechem.2012.07.015

    CAS  Google Scholar 

  32. 32.

    Mao Y, Bao Y, Gan S, Li F, Niu L (2011) Electrochemical sensor for dopamine based on a novel graphene-molecular imprinted polymers composite recognition element. Biosens Bioelectron 28(1):291–297. doi:10.1016/j.bios.2011.07.034

    CAS  Google Scholar 

  33. 33.

    Liu Y, Zhu L, Zhang Y, Tang H (2012) Electrochemical sensoring of 2,4-dinitrophenol by using composites of graphene oxide with surface molecular imprinted polymer. Sens Actuators, B 171:1151–1158. doi:10.1016/j.snb.2012.06.054

    Google Scholar 

  34. 34.

    Chang L, Wu S, Chen S, Li X (2011) Preparation of graphene oxide-molecularly imprinted polymer composites via atom transfer radical polymerization. J Mater Sci 46(7):2024–2029. doi:10.1007/s10853-010-5033-z

    CAS  Google Scholar 

  35. 35.

    Pan J, Hang H, Dai X, Dai J, Huo P, Yan Y (2012) Switched recognition and release ability of temperature responsive molecularly imprinted polymers based on magnetic halloysite nanotubes. J Mater Chem 22(33):17167–17175. doi:10.1039/C2jm32821f

    CAS  Google Scholar 

  36. 36.

    Pan J, Wang B, Dai J, Dai X, Hang H, Ou H, Yan Y (2012) Selective recognition of 2,4,5-trichlorophenol by temperature responsive and magnetic molecularly imprinted polymers based on halloysite nanotubes. J Mater Chem 22(8):3360–3369. doi:10.1039/C1jm14825g

    CAS  Google Scholar 

  37. 37.

    Pan J, Yao H, Xu L, Ou H, Huo P, Li X, Yan Y (2011) Selective recognition of 2,4,6-trichlorophenol by molecularly imprinted polymers based on magnetic halloysite nanotubes composites. J Phys Chem C 115(13):5440–5449. doi:10.1021/jp111120x

    CAS  Google Scholar 

  38. 38.

    Zhang W, He XW, Chen Y, Li WY, Zhang YK (2012) Molecularly imprinted polymer anchored on the surface of denatured bovine serum albumin modified CdTe quantum dots as fluorescent artificial receptor for recognition of target protein. Biosens Bioelectron 31(1):84–89. doi:10.1016/j.bios.2011.09.042

    Google Scholar 

  39. 39.

    Zhang W, He XW, Chen Y, Li WY, Zhang YK (2011) Composite of CdTe quantum dots and molecularly imprinted polymer as a sensing material for cytochrome c. Biosens Bioelectron 26(5):2553–2558. doi:10.1016/j.bios.2010.11.004

    CAS  Google Scholar 

  40. 40.

    Wang HF, He Y, Ji TR, Yan XP (2009) Surface molecular imprinting on Mn-Doped ZnS quantum dots for room-temperature phosphorescence optosensing of pentachlorophenol in water. Anal Chem 81(4):1615–1621. doi:10.1021/ac802375a

    CAS  Google Scholar 

  41. 41.

    Mao Y, Bao Y, Han D, Li F, Niu L (2012) Efficient one-pot synthesis of molecularly imprinted silica nanospheres embedded carbon dots for fluorescent dopamine optosensing. Biosens Bioelectron 38(1):55–60. doi:10.1016/j.bios.2012.04.043

    CAS  Google Scholar 

  42. 42.

    Liu J, Chen H, Lin Z, Lin JM (2010) Preparation of surface imprinting polymer capped Mn-Doped ZnS quantum dots and their application for chemiluminescence detection of 4-nitrophenol in tap water. Anal Chem 82(17):7380–7386. doi:10.1021/ac101510b

    CAS  Google Scholar 

  43. 43.

    Lin HY, Ho MS, Lee MH (2009) Instant formation of molecularly imprinted poly(ethylene-co-vinyl alcohol)/quantum dot composite nanoparticles and their use in one-pot urinalysis. Biosens Bioelectron 25(3):579–586. doi:10.1016/j.bios.2009.03.039

    CAS  Google Scholar 

  44. 44.

    Lian HT, Liu B, Chen YP, Sun XY (2012) A urea electrochemical sensor based on molecularly imprinted chitosan film doping with CdS quantum dots. Anal Biochem 426(1):40–46. doi:10.1016/j.ab.2012.03.024

    CAS  Google Scholar 

  45. 45.

    Ge S, Zhang C, Yu F, Yan M, Yu J (2011) Layer-by-layer self-assembly CdTe quantum dots and molecularly imprinted polymers modified chemiluminescence sensor for deltamethrin detection. Sens Actuators, B 156(1):222–227. doi:10.1016/j.snb.2011.04.024

    CAS  Google Scholar 

  46. 46.

    Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56–58. doi:10.1038/354056a0

    CAS  Google Scholar 

  47. 47.

    Hirsch A (2002) Functionalization of single-walled carbon nanotubes. Angew Chem Int Ed Engl 41(11):1853–1859. doi:10.1002/1521-3773(20020603)41:11<1853::AID-ANIE1853>3.0.CO;2-N

    CAS  Google Scholar 

  48. 48.

    Sun YP, Fu K, Lin Y, Huang W (2002) Functionalized carbon nanotubes: properties and applications. Acc Chem Res 35(12):1096–1104. doi:10.1021/ar010160v

    CAS  Google Scholar 

  49. 49.

    Dai HJ (2002) Carbon nanotubes: synthesis, integration, and properties. Acc Chem Res 35(12):1035–1044. doi:10.1021/ar0101640

    CAS  Google Scholar 

  50. 50.

    Kim B, Lee Y-H, Ryu J-H, Suh K-D (2006) Enhanced colloidal properties of single-wall carbon nanotubes in α-terpineol and Texanol. Colloids Surf, A 273(1–3):161–164. doi:10.1016/j.colsurfa.2005.08.024

    CAS  Google Scholar 

  51. 51.

    Vaisman L, Wagner HD, Marom G (2006) The role of surfactants in dispersion of carbon nanotubes. Adv Colloid Interface Sci 128–130:37–46. doi:10.1016/j.cis.2006.11.007

    Google Scholar 

  52. 52.

    Bianco A, Kostarelos K, Prato M (2011) Making carbon nanotubes biocompatible and biodegradable. Chem Commun 47(37):10182–10188. doi:10.1039/c1cc13011k

    CAS  Google Scholar 

  53. 53.

    Singh P, Campidelli S, Giordani S, Bonifazi D, Bianco A, Prato M (2009) Organic functionalisation and characterisation of single-walled carbon nanotubes. Chem Soc Rev 38(8):2214–2230. doi:10.1039/b518111a

    CAS  Google Scholar 

  54. 54.

    Liu J, Rinzler AG, Dai H, Hafner JH, Bradley RK, Boul PJ, Lu A, Iverson T, Shelimov K, Huffman CB, Rodriguez-Macias F, Shon YS, Lee TR, Colbert DT, Smalley RE (1998) Fullerene pipes. Science 280(5367):1253–1256. doi:10.1126/science.280.5367.1253

    CAS  Google Scholar 

  55. 55.

    Frank S, Poncharal P, Wang ZL, Heer WA (1998) Carbon nanotube quantum resistors. Science 280(5370):1744–1746. doi:10.1126/science.280.5370.1744

    CAS  Google Scholar 

  56. 56.

    Raffaelle RP, Landi BJ, Harris JD, Bailey SG, Hepp AF (2005) Carbon nanotubes for power applications. Mater Sci Eng B 116(3):233–243. doi:10.1016/j.mseb.2004.09.034

    Google Scholar 

  57. 57.

    Li LL, Lin R, He H, Jiang L, Gao MM (2013) Interaction of carboxylated single-walled carbon nanotubes with bovine serum albumin. Spectrochim Acta, Part A 105:45–51. doi:10.1016/j.saa.2012.11.111

    CAS  Google Scholar 

  58. 58.

    Jiang L, Liu TB, He H, Pham-Huy LA, Li LL, Pham-Huy C, Xiao DL (2012) Adsorption behavior of pazufloxacin mesilate on amino-functionalized carbon nanotubes. J Nanosci Nanotechnol 12(9):7271–7279. doi:10.1166/jnn.2012.6562

    CAS  Google Scholar 

  59. 59.

    Chen Z, Pierre D, He H, Tan SH, Chuong PH, Hong H, Huang JL (2011) Adsorption behavior of epirubicin hydrochloride on carboxylated carbon nanotubes. Int J Pharm 405(1–2):153–161. doi:10.1016/j.ijpharm.2010.11.034

    CAS  Google Scholar 

  60. 60.

    Xiao DL, Dramou P, He H, Lien APH, Li H, Yao YY, Chuong PH (2012) Magnetic carbon nanotubes: synthesis by a simple solvothermal process and application in magnetic targeted drug delivery system. J Nanopart Res 14(7):984–996. doi:10.1007/s11051-012-0984-4

    CAS  Google Scholar 

  61. 61.

    Huang J, Xing X, Zhang X, He X, Lin Q, Lian W, Zhu H (2011) A molecularly imprinted electrochemical sensor based on multiwalled carbon nanotube-gold nanoparticle composites and chitosan for the detection of tyramine. Food Res Int 44(1):276–281. doi:10.1016/j.foodres.2010.10.020

    CAS  Google Scholar 

  62. 62.

    Blomgren A, Berggren C, Holmberg A, Larsson F, Sellergren B, Ensing K (2002) Extraction of clenbuterol from calf urine using a molecularly imprinted polymer followed by quantitation by high-performance liquid chromatography with UV detection. J Chromatogr A 975(1):157–164. doi:10.1016/s0021-9673(02)01359-6

    CAS  Google Scholar 

  63. 63.

    Kootstra PR, Kuijpers CJPF, Wubs KL, van Doorn D, Sterk SS, van Ginkel LA, Stephany RW (2005) The analysis of beta-agonists in bovine muscle using molecular imprinted polymers with ion trap LCMS screening. Anal Chim Acta 529(1–2):75–81. doi:10.1016/j.aca.2004.09.053

    CAS  Google Scholar 

  64. 64.

    Xia Y, McGuffey JE, Bhattacharyya S, Sellergren B, Yilmaz E, Wang L, Bernert JT (2005) Analysis of the tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol in urine by extraction on a molecularly imprinted polymer column and liquid chromatography/atmospheric pressure ionization tandem mass spectrometry. Anal Chem 77(23):7639–7645. doi:10.1021/ac058027u

    CAS  Google Scholar 

  65. 65.

    Yan H, Cheng X, Yang G (2012) Dummy molecularly imprinted solid-phase extraction for selective determination of five phthalate esters in plastic bottled functional beverages. J Agric Food Chem 60(22):5524–5531. doi:10.1021/jf300660m

    CAS  Google Scholar 

  66. 66.

    Yin YM, Chen YP, Wang XF, Liu Y, Liu HL, Xie MX (2012) Dummy molecularly imprinted polymers on silica particles for selective solid-phase extraction of tetrabromobisphenol A from water samples. J Chromatogr A 1220:7–13. doi:10.1016/j.chroma.2011.11.065

    CAS  Google Scholar 

  67. 67.

    Nemoto K, Kubo T, Nomachi M, Sano T, Matsumoto T, Hosoya K, Hattori T, Kaya K (2007) Simple and effective 3D recognition of domoic acid using a molecularly imprinted polymer. J Am Chem Soc 129(44):13626–13632. doi:10.1021/ja0741426

    CAS  Google Scholar 

  68. 68.

    Tominaga Y, Kubo T, Kaya K, Hosoya K (2009) Effective recognition on the surface of a polymer prepared by molecular imprinting using ionic complex. Macromolecules 42(8):2911–2915. doi:10.1021/ma802880z

    CAS  Google Scholar 

  69. 69.

    Prasad BB, Madhuri R, Tiwari MP, Sharma PS (2010) Imprinting molecular recognition sites on multiwalled carbon nanotubes surface for electrochemical detection of insulin in real samples. Electrochim Acta 55(28):9146–9156. doi:10.1016/j.electacta.2010.09.008

    CAS  Google Scholar 

  70. 70.

    Prasad BB, Prasad A, Tiwari MP (2013) Highly selective and sensitive analysis of gamma-aminobutyric acid using a new molecularly imprinted polymer modified at the surface of abrasively immobilized multi-walled carbon nanotubes on pencil graphite electrode. Electrochim Acta 102:400–408. doi:10.1016/j.electacta.2013.04.043

    CAS  Google Scholar 

  71. 71.

    Courtois J, Fischer G, Schauff S, Albert K, Irgum K (2005) Interactions of bupivacaine with a molecularly imprinted polymer in a monolithic format studied by NMR. Anal Chem 78(2):580–584. doi:10.1021/ac0515733

    Google Scholar 

  72. 72.

    Whitcombe MJ, Chianella I, Larcombe L, Piletsky SA, Noble J, Porter R, Horgan A (2011) The rational development of molecularly imprinted polymer-based sensors for protein detection. Chem Soc Rev 40(3):1547–1571. doi:10.1039/c0cs00049c

    CAS  Google Scholar 

  73. 73.

    Gholivand MB, Khodadadian M (2011) Rationally designed molecularly imprinted polymers for selective extraction of methocarbamol from human plasma. Talanta 85(3):1680–1688. doi:10.1016/j.talanta.2011.06.066

    CAS  Google Scholar 

  74. 74.

    Baggiani C, Giovannoli C, Anfossi L, Passini C, Baravalle P, Giraudi G (2012) A connection between the binding properties of imprinted and nonimprinted polymers: a change of perspective in molecular imprinting. J Am Chem Soc 134(3):1513–1518. doi:10.1021/ja205632t

    CAS  Google Scholar 

  75. 75.

    Pichon V, Haupt K (2006) Affinity separations on molecularly imprinted polymers with special emphasis on solid-phase extraction. J Liq Chromatogr Relat Technol 29(7–8):989–1023. doi:10.1080/10826070600574739

    CAS  Google Scholar 

  76. 76.

    Michailof C, Manesiotis P, Panayiotou C (2008) Synthesis of caffeic acid and p-hydroxybenzoic acid molecularly imprinted polymers and their application for the selective extraction of polyphenols from olive mill waste waters. J Chromatogr A 1182(1):25–33. doi:10.1016/j.chroma.2008.01.001

    CAS  Google Scholar 

  77. 77.

    Cai W, Gupta RB (2004) Molecularly-imprinted polymers selective for tetracycline binding. Sep Purif Technol 35(3):215–221. doi:10.1016/S1383-5866(03)00143-6

    CAS  Google Scholar 

  78. 78.

    Pardeshi S, Dhodapkar R, Kumar A (2013) Quantum chemical density functional theory studies on the molecular structure and vibrational spectra of Gallic acid imprinted polymers. Spectrochim Acta A Mol Biomol Spectrosc 116:562–573. doi:10.1016/j.saa.2013.07.067

    CAS  Google Scholar 

  79. 79.

    Panahi R, Vasheghani-Farahani E, Shojaosadati SA (2007) Separation of l-lysine from dilute aqueous solution using molecular imprinting technique. Biochem Eng J 35(3):352–356. doi:10.1016/j.bej.2007.01.027

    CAS  Google Scholar 

  80. 80.

    Gao R, Kong X, Su F, He X, Chen L, Zhang Y (2010) Synthesis and evaluation of molecularly imprinted core-shell carbon nanotubes for the determination of triclosan in environmental water samples. J Chromatogr A 1217(52):8095–8102. doi:10.1016/j.chroma.2010.10.121

    CAS  Google Scholar 

  81. 81.

    Zhang Z, Yang X, Zhang H, Zhang M, Luo L, Hu Y, Yao S (2011) Novel molecularly imprinted polymers based on multi-walled carbon nanotubes with binary functional monomer for the solid-phase extraction of erythromycin from chicken muscle. J Chromatogr B Anal Technol Biomed Life Sci 879(19):1617–1624. doi:10.1016/j.jchromb.2011.03.054

    CAS  Google Scholar 

  82. 82.

    Hu YF, Zhang ZH, Zhang HB, Luo LJ, Yao SZ (2012) Sensitive and selective imprinted electrochemical sensor for p-nitrophenol based on ZnO nanoparticles/carbon nanotubes doped chitosan film. Thin Solid Films 520(16):5314–5321. doi:10.1016/j.tsf.2011.11.083

    CAS  Google Scholar 

  83. 83.

    Yu JCC, Lai EPC (2006) Molecularly imprinted polypyrrole modified carbon nanotubes on stainless steel frit for selective micro solid phase pre-concentration of ochratoxin A. React Funct Polym 66(7):702–711. doi:10.1016/j.reactfunctpolym.2005.10.021

    CAS  Google Scholar 

  84. 84.

    Kan X, Zhao Y, Geng Z, Wang Z, Zhu JJ (2008) Composites of multiwalled carbon nanotubes and molecularly imprinted polymers for dopamine recognition. J Phys Chem C 112(13):4849–4854. doi:10.1021/jp077445v

    CAS  Google Scholar 

  85. 85.

    Choong CL, Bendall JS, Milne WI (2009) Carbon nanotube array: a new MIP platform. Biosens Bioelectron 25(3):652–656. doi:10.1016/j.bios.2008.11.025

    CAS  Google Scholar 

  86. 86.

    Chen HJ, Zhang ZH, Luo LJ, Yao SZ (2012) Surface-imprinted chitosan-coated magnetic nanoparticles modified multi-walled carbon nanotubes biosensor for detection of bovine serum albumin. Sens Actuators, B 163(1):76–83. doi:10.1016/j.snb.2012.01.010

    CAS  Google Scholar 

  87. 87.

    Xiao D, Dramou P, Xiong N, He H, Li H, Yuan D, Dai H (2013) Development of novel molecularly imprinted magnetic solid-phase extraction materials based on magnetic carbon nanotubes and their application for the determination of gatifloxacin in serum samples coupled with high performance liquid chromatography. J Chromatogr A 1274:44–53. doi:10.1016/j.chroma.2012.12.011

    CAS  Google Scholar 

  88. 88.

    Liu X, Wang X, Tan F, Zhao H, Quan X, Chen J, Li L (2012) An electrochemically enhanced solid-phase microextraction approach based on molecularly imprinted polypyrrole/multi-walled carbon nanotubes composite coating for selective extraction of fluoroquinolones in aqueous samples. Anal Chim Acta 727:26–33. doi:10.1016/j.aca.2012.03.054

    CAS  Google Scholar 

  89. 89.

    Tan F, Deng M, Liu X, Zhao H, Li X, Quan X, Chen J (2011) Evaluation of a novel microextraction technique for aqueous samples: porous membrane envelope filled with multiwalled carbon nanotubes coated with molecularly imprinted polymer. J Sep Sci 34(6):707–715. doi:10.1002/jssc.201000791

    CAS  Google Scholar 

  90. 90.

    Yen CP, Chin NP, Wei HC, Chuan HK (2010) Detection of uric acid based on multi-walled carbon nanotubes polymerized with a layer of molecularly imprinted PMAA. Sens Actuators, B 146(2):466–471. doi:10.1016/j.snb.2009.11.035

    Google Scholar 

  91. 91.

    Diaz-Diaz G, Carmen Blanco-Lopez M, Jesus Lobo-Castanon M, Miranda-Ordieres AJ, Tunon-Blanco P (2011) Preparation and characterization of a molecularly imprinted microgel for electrochemical sensing of 2,4,6-trichlorophenol. Electroanalysis 23(1):201–208. doi:10.1002/elan.201000481

    CAS  Google Scholar 

  92. 92.

    Yufang H, Zhaohui Z, Huabin Z, Lijuan L, Shouzhuo Y (2012) A sensitive and selective sensor-coated molecularly imprinted sol-gel film incorporating beta-cyclodextrin-multi-walled carbon nanotubes and cobalt nanoparticles-chitosan for oxacillin determination. Surf Interface Anal 44(3):334–341. doi:10.1002/sia.3807

    Google Scholar 

  93. 93.

    Hu Y, Zhang Z, Zhang H, Luo L, Yao S (2012) Selective and sensitive molecularly imprinted sol-gel film-based electrochemical sensor combining mercaptoacetic acid-modified PbS nanoparticles with Fe3O4@Au-multi-walled carbon nanotubes-chitosan. J Solid State Electrochem 16(3):857–867. doi:10.1007/s10008-011-1434-4

    CAS  Google Scholar 

  94. 94.

    Kan X, Liu T, Zhou H, Li C, Fang B (2010) Molecular imprinting polymer electrosensor based on gold nanoparticles for theophylline recognition and determination. Microchim Acta 171(3–4):423–429. doi:10.1007/s00604-010-0455-5

    CAS  Google Scholar 

  95. 95.

    Li H, Xie C, Li S, Xu K (2012) Electropolymerized molecular imprinting on gold nanoparticle-carbon nanotube modified electrode for electrochemical detection of triazophos. Colloids Surf, B 89:175–181. doi:10.1016/j.colsurfb.2011.09.010

    CAS  Google Scholar 

  96. 96.

    Lian W, Huang J, Yu J, Zhang X, Lin Q, He X, Xing X, Liu S (2012) A molecularly imprinted sensor based on beta-cyclodextrin incorporated multiwalled carbon nanotube and gold nanoparticles-polyamide amine dendrimer nanocomposites combining with water-soluble chitosan derivative for the detection of chlortetracycline. Food Control 26(2):620–627. doi:10.1016/j.foodcont.2012.02.023

    CAS  Google Scholar 

  97. 97.

    Moreira FTC, Dutra RAF, Noronha JPC, Cunha AL, Sales MGF (2011) Artificial antibodies for troponin T by its imprinting on the surface of multiwalled carbon nanotubes: Its use as sensory surfaces. Biosens Bioelectron 28(1):243–250. doi:10.1016/j.bios.2011.07.026

    CAS  Google Scholar 

  98. 98.

    Prasad BB, Kumar D, Madhuri R, Tiwari MP (2011) Sol-gel derived multiwalled carbon nanotubes ceramic electrode modified with molecularly imprinted polymer for ultra trace sensing of dopamine in real samples. Electrochim Acta 56(20):7202–7211. doi:10.1016/j.electacta.2011.04.090

    CAS  Google Scholar 

  99. 99.

    Lee E, Park DW, Lee J-O, Kim DS, Lee BH, Kim BS (2008) Molecularly imprinted polymers immobilized on carbon nanotube. Colloids Surf, A 313:202–206. doi:10.1016/j.colsurfa.2007.04.093

    Google Scholar 

  100. 100.

    Lee HY, Kim BS (2009) Grafting of molecularly imprinted polymers on iniferter-modified carbon nanotube. Biosens Bioelectron 25(3):587–591. doi:10.1016/j.bios.2009.03.040

    Google Scholar 

  101. 101.

    Zhang XL, Zhang Y, Yin XF, Du BB, Zheng C, Yang HH (2013) A facile approach for preparation of molecularly imprinted polymers layer on the surface of carbon nanotubes. Talanta 105:403–408. doi:10.1016/j.talanta.2012.10.062

    CAS  Google Scholar 

  102. 102.

    Hu Y, Li J, Zhang Z, Zhang H, Luo L, Yao S (2011) Imprinted sol–gel electrochemical sensor for the determination of benzylpenicillin based on Fe3O4@SiO2/multi-walled carbon nanotubes-chitosans nanocomposite film modified carbon electrode. Anal Chim Acta 698(1–2):61–68. doi:10.1016/j.aca.2011.04.054

    CAS  Google Scholar 

  103. 103.

    Fu XC, Wu J, Nie L, Xie CG, Liu JH, Huang XJ (2012) Electropolymerized surface ion imprinting films on a gold nanoparticles/single-wall carbon nanotube nanohybrids modified glassy carbon electrode for electrochemical detection of trace mercury(II) in water. Anal Chim Acta 720:29–37. doi:10.1016/j.aca.2011.12.071

    CAS  Google Scholar 

  104. 104.

    Zhao H, Chen Y, Tian J, Yu H, Quan X (2012) Selectively electrochemical determination of chloramphenicol in aqueous solution using molecularly imprinted polymer-carbon nanotubes-gold nanoparticles modified electrode. J Electrochem Soc 159(6):J231–J236. doi:10.1149/2.116206jes

    CAS  Google Scholar 

  105. 105.

    Lu F, Li H, Sun M, Fan L, Qiu H, Li X, Luo C (2012) Flow injection chemiluminescence sensor based on core-shell magnetic molecularly imprinted nanoparticles for determination of sulfadiazine. Anal Chim Acta 718:84–91. doi:10.1016/j.aca.2011.12.054

    CAS  Google Scholar 

  106. 106.

    Gao R, Su X, He X, Chen L, Zhang Y (2011) Preparation and characterisation of core-shell CNTs@MIPs nanocomposites and selective removal of estrone from water samples. Talanta 83(3):757–764. doi:10.1016/j.talanta.2010.10.034

    CAS  Google Scholar 

  107. 107.

    Kong X, Gao R, He X, Chen L, Zhang Y (2012) Synthesis and characterization of the core-shell magnetic molecularly imprinted polymers Fe3O4@MIPs adsorbents for effective extraction and determination of sulfonamides in the poultry feed. J Chromatogr A 1245:8–16. doi:10.1016/j.chroma.2012.04.061

    CAS  Google Scholar 

  108. 108.

    Prasad BB, Prasad A, Tiwari MP (2013) Multiwalled carbon nanotubes-ceramic electrode modified with substrate-selective imprinted polymer for ultra-trace detection of bovine serum albumin. Biosens Bioelectron 39(1):236–243. doi:10.1016/j.bios.2012.07.080

    CAS  Google Scholar 

  109. 109.

    Yang M, Zhang Y, Lin S, Yang X, Fan Z, Yang L, Dong X (2013) Preparation of a bifunctional pyrazosulfuron-ethyl imprinted polymer with hydrophilic external layers by reversible addition-fragmentation chain transfer polymerization and its application in the sulfonylurea residue analysis. Talanta 114:143–151. doi:10.1016/j.talanta.2013.03.078

    CAS  Google Scholar 

  110. 110.

    Hu Y, Li Y, Liu R, Tan W, Li G (2011) Magnetic molecularly imprinted polymer beads prepared by microwave heating for selective enrichment of beta-agonists in pork and pig liver samples. Talanta 84(2):462–470. doi:10.1016/j.talanta.2011.01.045

    CAS  Google Scholar 

  111. 111.

    Sun X, He J, Cai G, Lin A, Zheng W, Liu X, Chen L, He X, Zhang Y (2010) Room temperature ionic liquid-mediated molecularly imprinted polymer monolith for the selective recognition of quinolones in pork samples. J Sep Sci 33(23–24):3786–3793. doi:10.1002/jssc.201000337

    CAS  Google Scholar 

  112. 112.

    Walcarius A, Collinson MM (2009) Analytical chemistry with silica sol-gels: traditional routes to new materials for chemical analysis. Annu Rev Anal Chem 2:121–143. doi:10.1146/annurev-anchem-060908-155139

    CAS  Google Scholar 

  113. 113.

    Suriyanarayanan S, Cywinski PJ, Moro AJ, Mohr GJ, Kutner W (2012) Chemosensors based on molecularly imprinted polymers. Top Curr Chem 325:165–265. doi:10.1007/128_2010_92

    CAS  Google Scholar 

  114. 114.

    Malitesta C, Mazzotta E, Picca RA, Poma A, Chianella I, Piletsky SA (2012) MIP sensors–the electrochemical approach. Anal Bioanal Chem 402(5):1827–1846. doi:10.1007/s00216-011-5405-5

    CAS  Google Scholar 

  115. 115.

    Lian W, Liu S, Yu J, Li J, Cui M, Xu W, Huang J (2013) Electrochemical sensor using neomycin-imprinted film as recognition element based on chitosan-silver nanoparticles/graphene-multiwalled carbon nanotubes composites modified electrode. Biosens Bioelectron 44:70–76. doi:10.1016/j.bios.2013.01.002

    CAS  Google Scholar 

  116. 116.

    Shekarchizadeh H, Ensafi AA, Kadivar M (2013) Selective determination of sucrose based on electropolymerized molecularly imprinted polymer modified multiwall carbon nanotubes/glassy carbon electrode. Mater Sci Eng C 33(6):3553–3561. doi:10.1016/j.msec.2013.04.052

    CAS  Google Scholar 

  117. 117.

    Minko S (2008) Grafting on solid surfaces: “Grafting to” and “Grafting from” methods. In: Stamm M (ed) Polymer surfaces and interfaces. Springer, Berlin, pp 215–234. doi:10.1007/978-3-540-73865-7_11

    Google Scholar 

  118. 118.

    Lépinay S, Kham K, Millot M-C, Carbonnier B (2012) In-situ polymerized molecularly imprinted polymeric thin films used as sensing layers in surface plasmon resonance sensors: mini-review focused on 2010–2011. Chem Pap 66(5):340–351. doi:10.2478/s11696-012-0134-6

    Google Scholar 

  119. 119.

    Prasad BB, Pandey I, Srivastava A, Kumar D, Tiwari MP (2013) Multiwalled carbon nanotubes-based pencil graphite electrode modified with an electrosynthesized molecularly imprinted nanofilm for electrochemical sensing of methionine enantiomers. Sens Actuators, B 176:863–874. doi:10.1016/j.snb.2012.09.050

    CAS  Google Scholar 

  120. 120.

    Zhang Z, Zhang H, Hu Y, Yao S (2010) Synthesis and application of multi-walled carbon nanotubes-molecularly imprinted sol-gel composite material for on-line solid-phase extraction and high-performance liquid chromatography determination of trace Sudan IV. Anal Chim Acta 661(2):173–180. doi:10.1016/j.aca.2009.12.024

    CAS  Google Scholar 

  121. 121.

    Zeng H, Wang Y, Liu X, Kong J, Nie C (2012) Preparation of molecular imprinted polymers using bi-functional monomer and bi-crosslinker for solid-phase extraction of rutin. Talanta 93:172–181. doi:10.1016/j.talanta.2012.02.008

    CAS  Google Scholar 

  122. 122.

    Cai X, Li J, Zhang Z, Yang F, Dong R, Chen L (2014) Novel Pb2+ ion imprinted polymers based on ionic interaction via synergy of dual functional monomers for selective solid-phase extraction of Pb2+ in water samples. ACS Appl Mater Interfaces 6(1):305–313. doi:10.1021/am4042405

    CAS  Google Scholar 

  123. 123.

    Wei Y, Qiu LH, Yu JCC, Lai EPC (2007) Molecularly imprinted solid phase extraction in a syringe needle packed with polypyrrole-encapsulated carbon nanotubes for determination of ochratoxin a in red wine. Food Sci Technol Int 13(5):375–380. doi:10.1177/1082013207085914

    CAS  Google Scholar 

  124. 124.

    Zhang Z, Zhang H, Hu Y, Yang X, Yao S (2010) Novel surface molecularly imprinted material modified multi-walled carbon nanotubes as solid-phase extraction sorbent for selective extraction gallium ion from fly ash. Talanta 82(1):304–311. doi:10.1016/j.talanta.2010.04.038

    CAS  Google Scholar 

  125. 125.

    Xiao D, Dramou P, Xiong N, He H, Yuan D, Dai H, Li H, He X, Peng J, Li N (2013) Preparation of molecularly imprinted polymers on the surface of magnetic carbon nanotubes with a pseudo template for rapid simultaneous extraction of four fluoroquinolones in egg samples. Analyst 138(11):3287–3296. doi:10.1039/c3an36755j

    CAS  Google Scholar 

  126. 126.

    Ebrahimzadeh H, Moazzen E, Amini MM, Sadeghi O (2013) Novel ion imprinted polymer coated multiwalled carbon nanotubes as a high selective sorbent for determination of gold ions in environmental samples. Chem Eng J 215:315–321. doi:10.1016/j.cej.2012.11.031

    Google Scholar 

  127. 127.

    Madrakian T, Ahmadi M, Afkhami A, Soleimani M (2013) Selective solid-phase extraction of naproxen drug from human urine samples using molecularly imprinted polymer-coated magnetic multi-walled carbon nanotubes prior to its spectrofluorometric determination. Analyst 138(16):4542–4549. doi:10.1039/c3an00686g

    CAS  Google Scholar 

  128. 128.

    Zhang Z, Hu Y, Zhang H, Luo L, Yao S (2010) Layer-by-layer assembly sensitive electrochemical sensor for selectively probing L-histidine based on molecular imprinting sol-gel at functionalized indium tin oxide electrode. Biosens Bioelectron 26(2):696–702. doi:10.1016/j.bios.2010.06.062

    Google Scholar 

  129. 129.

    Wu B, Wang Z, Xue Z, Zhou X, Du J, Liu X, Lu X (2012) A novel molecularly imprinted electrochemiluminescence sensor for isoniazid detection. Analyst 137(16):3644–3652. doi:10.1039/c2an35499c

    CAS  Google Scholar 

  130. 130.

    Zhang M, Mullens C, Gorski W (2007) Coimmobilization of dehydrogenases and their cofactors in electrochemical biosensors. Anal Chem 79(6):2446–2450. doi:10.1021/ac061698n

    CAS  Google Scholar 

  131. 131.

    Cai D, Ren L, Zhao H, Xu C, Zhang L, Yu Y, Wang H, Lan Y, Roberts MF, Chuang JH, Naughton MJ, Ren Z, Chiles TC (2010) A molecular-imprint nanosensor for ultrasensitive detection of proteins. Nat Nanotechnol 5(8):597–601. doi:10.1038/nnano.2010.114

    CAS  Google Scholar 

  132. 132.

    Prasad BB, Srivastava A, Pandey I, Tiwari MP (2013) Electrochemically grown imprinted polybenzidine nanofilm on multiwalled carbon nanotubes anchored pencil graphite fibers for enantioselective micro-solid phase extraction coupled with ultratrace sensing of D- and L-methionine. J Chromatogr B Anal Technol Biomed Life Sci 912:65–74. doi:10.1016/j.jchromb.2012.10.010

    CAS  Google Scholar 

  133. 133.

    Zhang D, Yu D, Zhao W, Yang Q, Kajiura H, Li Y, Zhou T, Shi G (2012) A molecularly imprinted polymer based on functionalized multiwalled carbon nanotubes for the electrochemical detection of parathion-methyl. Analyst 137(11):2629–2636. doi:10.1039/c2an35338e

    CAS  Google Scholar 

  134. 134.

    Yang S, Yang R, Li G, Qu L, Li J, Yu L (2010) Nafion/multi-wall carbon nanotubes composite film coated glassy carbon electrode for sensitive determination of caffeine. J Electroanal Chem 639(1–2):77–82. doi:10.1016/j.jelechem.2009.11.025

    CAS  Google Scholar 

  135. 135.

    Alizadeh T, Ganjali MR, Zare M, Norouzi P (2010) Development of a voltammetric sensor based on a molecularly imprinted polymer (MIP) for caffeine measurement. Electrochim Acta 55(5):1568–1574. doi:10.1016/j.electacta.2009.09.086

    CAS  Google Scholar 

  136. 136.

    Sun JY, Huang KJ, Wei SY, Wu ZW, Ren FP (2011) A graphene-based electrochemical sensor for sensitive determination of caffeine. Colloids Surf B: Biointerfaces 84(2):421–426. doi:10.1016/j.colsurfb.2011.01.036

    CAS  Google Scholar 

  137. 137.

    Santos WJR, Santhiago M, Yoshida IVP, Kubota LT (2012) Electrochemical sensor based on imprinted sol–gel and nanomaterial for determination of caffeine. Sens Actuators, B 166–167:739–745. doi:10.1016/j.snb.2012.03.051

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China(Grant NO. 81402899), the Open Project of Key Laboratory of Modern Toxicology of the Ministry of Education (Grant NO. NMUMT201404), and the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hua He.

Additional information

Hao Dai and Deli Xiao equally contributed to this work and should be considered co-first authors.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dai, H., Xiao, D., He, H. et al. Synthesis and analytical applications of molecularly imprinted polymers on the surface of carbon nanotubes: a review. Microchim Acta 182, 893–908 (2015). https://doi.org/10.1007/s00604-014-1376-5

Download citation

Keywords

  • Multi-walled carbon nanotubes
  • Molecularly imprinted polymers
  • Synthesis
  • Nanoparticles
  • Solid-phase extraction
  • Chemical sensor