Skip to main content
Log in

Concanavalin A electrochemical sensor based on the surface blocking principle at an ion-selective polymeric membrane

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We report on a new electrochemical sensor for Concanavalin A. It is based on blocking the surface of plasticized PVC membranes that were covalently modified with D-mannose using click chemistry. The interaction of D-mannose with Concanavalin A on the surface perturbs the flux of a marker ion for which the ion-selective membrane is responsive, and this results in a change in the electrochemical signal. The sensor was characterized using a variety of electrochemical protocols, and results were confirmed by quartz crystal microbalance experiments. The lowest limit of detection (10 μg mL−1) was obtained using a membrane containing a cation exchanger and tetrabutylammonium ion as the marker ion.

An electrochemical sensor for Concanavalin A based on the surface blocking principle was prepared by covalent modification of a plasticized PVC membrane surface with D-mannose by click chemistry

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lis H, Sharon N (1998) Lectins: carbohydrate-specific proteins that mediate cellular recognition. Chem Rev 98(2):637–674. doi:10.1021/cr940413g

    Article  CAS  Google Scholar 

  2. McCoy JJ, Mann BJ, Petri WA (1994) Adherence and cytotoxicity of Entamoeba histolytica or how lectins let parasites stick around. Infect Immun 62(8):3045–3050

    CAS  Google Scholar 

  3. Ofek I, Sharon N (1990) Adhesins as lectins: specificity and role in infection. Curr Top Microbiol Immunol 151:91–113, Copyright (C) 2013 U.S. National Library of Medicine

    CAS  Google Scholar 

  4. Colnot C, Ripoche M-A, Fowlis D, Cannon V, Scaerou F, Cooper DNW, Poirier F (1997) The role of Galectins in mouse development. Trends Glycosci Glycotechnol 9(45):31–40

    Article  CAS  Google Scholar 

  5. Sharon N, Lis H (1989) Lectins as cell recognition molecules. Science 246(4927):227–234. doi:10.1126/science.2552581

    Article  CAS  Google Scholar 

  6. Kilpatrick DC, Green C (1992) Lectins as blood typing reagents. Adv Lectin Res 5:51–94, Copyright (C) 2013 American Chemical Society (ACS). All Rights Reserved

    CAS  Google Scholar 

  7. Bouckaert J, Loris R, Poortmans F, Wyns L (1995) Crystallographic structure of metal-free concanavalin A at 2.5 Å resolution. Proteins 23(4):510–524. doi:10.1002/prot.340230406

    Article  CAS  Google Scholar 

  8. Huang C-F, Yao G-H, Liang R-P, Qiu J-D (2013) Graphene oxide and dextran capped gold nanoparticles based surface plasmon resonance sensor for sensitive detection of concanavalin A. Biosens Bioelectron 50(0):305–310. doi:10.1016/j.bios.2013.07.002

    Article  CAS  Google Scholar 

  9. Yonzon CR, Jeoung E, Zou S, Schatz GC, Mrksich M, Van Duyne RP (2004) A comparative analysis of localized and propagating surface plasmon resonance sensors: the binding of concanavalin A to a monosaccharide functionalized self-assembled monolayer. J Am Chem Soc 126(39):12669–12676. doi:10.1021/ja047118q

  10. Zhang Y, Luo S, Tang Y, Yu L, Hou K-Y, Cheng J-P, Zeng X, Wang PG (2006) Carbohydrate − protein interactions by “clicked” carbohydrate self-assembled monolayers. Anal Chem 78(6):2001–2008. doi:10.1021/ac051919+

  11. Mandal S, Das R, Gupta P, Mukhopadhyay B (2012) Synthesis of a sugar-functionalized iridium complex and its application as a fluorescent lectin sensor. Tetrahedron Lett 53(30):3915–3918. doi:10.1016/j.tetlet.2012.05.075

    Article  CAS  Google Scholar 

  12. Martin Rodriguez E, Bogdan N, Capobianco JA, Orlandi S, Cavazzini M, Scalera C, Quici S (2013) A highly sensitive luminescent lectin sensor based on an α-D-mannose substituted Tb3+ antenna complex. Dalton T 42(26):9453–9461. doi:10.1039/c3dt33023k

    Article  CAS  Google Scholar 

  13. Sanji T, Shiraishi K, Nakamura M, Tanaka M (2010) Fluorescence turn-On sensing of lectins with mannose-substituted tetraphenylethenes based on aggregation-induced emission. Chem-Asian J 5(4):817–824. doi:10.1002/asia.200900430

    Article  CAS  Google Scholar 

  14. Sanji T, Shiraishi K, Tanaka M (2008) Sugar − phosphole oxide conjugates as “turn-on” luminescent sensors for lectins. ACS Appl Mater Interfaces 1(2):270–273. doi:10.1021/am800224r

    Article  Google Scholar 

  15. Shi J, Cai L, Pu K-Y, Liu B (2010) Synthesis and characterization of water-soluble conjugated glycopolymer for fluorescent sensing of concanavalin A. Chem-Asian J 5(2):301–308. doi:10.1002/asia.200900297

    Article  CAS  Google Scholar 

  16. Wang K-R, Wang Y-Q, An H-W, Zhang J-C, Li X-L (2013) A triazatruxene-based glycocluster as a fluorescent sensor for concanavalin A. Chem-Eur J 19(8):2903–2909. doi:10.1002/chem.201200905

    Article  CAS  Google Scholar 

  17. Casas-Solvas JM, Ortiz-Salmeron E, Garcia-Fuentes L, Vargas-Berenguel A (2008) Ferrocene-mannose conjugates as electrochemical molecular sensors for concanavalin A lectin. Org Biomol Chem 6(22):4230–4235. doi:10.1039/b809542f

    Article  CAS  Google Scholar 

  18. Martos-Maldonado MC, Casas-Solvas JM, Quesada-Soriano I, García-Fuentes L, Vargas-Berenguel A (2013) Poly (amido amine)-based mannose-glycodendrimers as multielectron redox probes for improving lectin sensing. Langmuir 29(4):1318–1326. doi:10.1021/la304107a

    Article  CAS  Google Scholar 

  19. Loaiza OA, Lamas-Ardisana PJ, Jubete E, Ochoteco E, Loinaz I, Gn C, García I, Penadés S (2011) Nanostructured disposable Impedimetric sensors as tools for specific biomolecular interactions: sensitive recognition of concanavalin A. Anal Chem 83(8):2987–2995. doi:10.1021/ac103108m

  20. Muslinkina L, Pretsch E (2004) Recognition of concanavalin A at the interface between a solvent polymeric membrane and an aqueous sample monitored by electric impedance spectroscopy. Chem Commun 10:1218–1219. doi:10.1039/b401864h

    Article  Google Scholar 

  21. Gyurcsanyi RE, Vigassy T, Pretsch E (2003) Biorecognition-modulated ion fluxes through functionalized gold nanotubules as a novel label-free biosensing approach. Chem Commun 20:2560–2561. doi:10.1039/b307393a

    Article  Google Scholar 

  22. Ozdemir MS, Marczak M, Bohets H, Bonroy K, Roymans D, Stuyver L, Vanhoutte K, Pawlak M, Bakker E (2013) A label-free potentiometric sensor principle for the detection of antibody–antigen interactions. Anal Chem 85(9):4770–4776. doi:10.1021/ac400514u

    Article  CAS  Google Scholar 

  23. Xu Y, Bakker E (2008) Ion channel mimetic chronopotentiometric polymeric membrane ion sensor for surface-confined protein detection. Langmuir 25(1):568–573. doi:10.1021/la802728p

    Article  Google Scholar 

  24. Ghosh G, Bachas L, Anderson K (2007) Biosensor incorporating cell barrier architectures for detecting Staphylococcus aureus alpha toxin. Anal Bioanal Chem 387(2):567–574. doi:10.1007/s00216-006-0949-5

    Article  CAS  Google Scholar 

  25. Ghosh G, Bachas L, Anderson K (2008) Biosensor incorporating cell barrier architectures on ion selective electrodes for early screening of cancer. Anal Bioanal Chem 391(8):2783–2791. doi:10.1007/s00216-008-2192-8

    Article  CAS  Google Scholar 

  26. Ghosh G, Mehta I, Cornette AL, Anderson KW (2008) Measuring permeability with a whole cell-based biosensor as an alternate assay for angiogenesis: comparison with common in vitro assays. Biosens Bioelectron 23(7):1109–1116. doi:10.1016/j.bios.2007.10.023

    Article  CAS  Google Scholar 

  27. May KML, Vogt A, Bachas LG, Anderson KW (2005) Vascular endothelial growth factor as a biomarker for the early detection of cancer using a whole cell-based biosensor. Anal Bioanal Chem 382(4):1010–1016. doi:10.1007/s00216-005-3224-2

    Article  CAS  Google Scholar 

  28. May KML, Wang Y, Bachas LG, Anderson KW (2004) Development of a whole-cell-based biosensor for detecting histamine as a model toxin. Anal Chem 76(14):4156–4161. doi:10.1021/ac049810+

    Article  CAS  Google Scholar 

  29. Belegrinou S, Menon S, Dobrunz D, Meier W (2011) Solid-supported polymeric membranes. Soft Matter 7(6):2202–2210. doi:10.1039/C0sm01163k

    Article  CAS  Google Scholar 

  30. Pawlak M, Grygolowicz-Pawlak E, Crespo GA, Mistlberger G, Bakker E (2013) PVC-based Ion-selective electrodes with enhanced biocompatibility by surface modification with “click” chemistry. Electroanal 25(8):1840–1846. doi:10.1002/elan.201300212

    Article  CAS  Google Scholar 

  31. Pawlak M, Mistlberger G, Bakker E (2012) In situ surface functionalization of plasticized poly (vinyl chloride) membranes by ‘click chemistry’. J Mater Chem 22(25):12796–12801. doi:10.1039/c2jm31118f

    Article  CAS  Google Scholar 

  32. Pawlak M, Grygolowicz-Pawlak E, Bakker E (2010) Ferrocene bound poly (vinyl chloride) as ion to electron transducer in electrochemical Ion sensors. Anal Chem 82(16):6887–6894. doi:10.1021/ac1010662

    Article  CAS  Google Scholar 

  33. Loris R, Casset F, Bouckaert J, Pletinckx J, Dao-Thi M-H, Poortmans F, Imberty A, Perez S, Wyns L (1994) The monosaccharide binding site of lentil lectin: an X-ray and molecular modelling study. Glycoconj J 11(6):507–517. doi:10.1007/bf00731301

    Article  CAS  Google Scholar 

  34. Ghahraman Afshar M, Crespo GA, Bakker E (2012) Direct Ion speciation analysis with ion-selective membranes operated in a sequential potentiometric/time resolved chronopotentiometric sensing mode. Anal Chem 84(20):8813–8821. doi:10.1021/ac302092m

Download references

Acknowledgments

The authors thank the Swiss National Science Foundation (FNS) for supporting this work. GM gratefully acknowledges the support of the Austrian Science Fund (FWF): J3343.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Bakker.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pawlak, M., Mistlberger, G. & Bakker, E. Concanavalin A electrochemical sensor based on the surface blocking principle at an ion-selective polymeric membrane. Microchim Acta 182, 129–137 (2015). https://doi.org/10.1007/s00604-014-1309-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-014-1309-3

Keywords

Navigation