Skip to main content
Log in

Preparation of nitrogen-doped reduced graphene oxide and its use in a glassy carbon electrode for sensing 4-nitrophenol at nanomolar levels

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We describe a novel procedure for the synthesis of nitrogen-doped reduced graphene oxide (N-rGO). It is based on the thermal reduction of GO (dispersed in water) with sodium diethyldithiocarbamate that acts as both the reducing agent and the source for nitrogen. The surface morphology of the N-rGO is characterized using high resolution transmission electron microscopy. X-ray photoelectron spectroscopy was carried out to study the composition of their surface, and Raman spectroscopy was performed to study the level of doping with nitrogen and the structural order. The N-rGO was deposited on a glassy carbon electrode (GCE), and the resulting electrode utilized as a sensing platform for 4-nitrophenol (4-NP). The modified GCE exhibits a well-defined oxidation peak current that is about ten times larger when compared to that of a bare GCE. The electron transfer number, proton transfer number and electron transfer rate constant (ks 1.046 s−1) were determined. At optimized conditions, the oxidation peak current is linearly related to the concentration of 4-NP in the 20–500 nM range, with a correlation coefficient of 0.9917. The detection limit (at an SNR of 3) is 7 nM. The method was successfully applied to the analysis of waters spiked with 4-NP. Recoveries range from 97.8 to 102.6 %, and no interferences are found for common inorganic cations and anions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lacorte S, Barceto D (1994) Rapid degradation of fenitrothion in estuarine waters. Environ Sci Technol 28:1159–1163

    Article  CAS  Google Scholar 

  2. Francis PC, Grothe DW, Scheuring JC (1986) Chronic toxicity of 4-nitrophenol to daphnia magna straus under statis-renewal and flow-through conditions. Bull Environ Contam Toxicol 36:730–737

    Article  CAS  Google Scholar 

  3. ATSDR, (1992) Toxicological profile for nitrophenols, agency for toxic substances and disease registry, Atlanta

  4. Herterich R (1991) Gas chromatographic determination of nitrophenols in atmospheric liquid water and airborne particulates. J Chromatogr A 549:313–324

    Article  CAS  Google Scholar 

  5. Daz TG, Cabanillas AG, Dez NM, Vzquez PP, Lpez FS (2000) Rapid and sensitive determination of 4-nitrophenol, 3-methyl-4-nitrophenol, 4,6-dinitro-o-cresol, parathion-methyl, fenitrothion, and parathion-ethyl by liquid chromatography with electrochemical detection. J Agric Food Chem 48:4508–4513

    Article  Google Scholar 

  6. Giribabu K, Suresh R, Manigandan R, Munusamy S, Praveen Kumar S, Muthamizh S, Narayanan V (2013) Nanomolar determination of 4-nitrophenol based on a poly (methylene blue)-modified glassy carbon electrode. Analyst 138:5811–5818

    Article  CAS  Google Scholar 

  7. Yin H, Zhou Y, Ai S, Liu X, Zhu L, Lu L (2010) Electrochemical oxidative determination of 4-nitrophenol based on a glassy carbon electrode modified with a hydroxyapatite nanopowder. Microchim Acta 169:87–92

    Article  CAS  Google Scholar 

  8. Luo L, Zou X, Ding Y, Wu Q (2008) Derivative voltammetric direct simultaneous determination of nitrophenol isomers at a carbon nanotube modified electrode. Sensors Actuators B 135:61–65

    Article  CAS  Google Scholar 

  9. Arvinte A, Mahosenaho M, Pinteala M, Sesay AM, Virtanen V (2011) Electrochemical oxidation of p-nitrophenol using graphene-modified electrodes, and A comparison to the performance of MWNT-based electrodes, Microchim. Acta 174:337–343

    CAS  Google Scholar 

  10. Hu S, Xu C, Wang G, Cui D (2001) Voltammetric determination of 4-nitrophenol at a sodium montmorillonite-anthraquinone chemically modified glassy carbon electrode. Talanta 54:115–123

    Article  CAS  Google Scholar 

  11. Bebeselea A, Manea F, Burtica G, Nagy L, Nagy G (2010) The electrochemical determination of phenolic derivates using multiple pulsed amperometry with graphite based electrodes. Talanta 80:1068–1072

    Article  CAS  Google Scholar 

  12. Xu X, Liu Z, Zhang X, Duan S, Xu S, Zhou C (2011) β-Cyclodextrin functionalized mesoporous silica for electrochemical selective sensor: Simultaneous determination of nitrophenol isomers Electrochim. Acta 58:142–149

    CAS  Google Scholar 

  13. Xu Y, Wang Y, Ding Y, Luo L, Liu X, Zhang Y (2011) Electrochemical simultaneous determination of nitrophenol isomers at nano-gold modified glassy carbon electrode. J Appl Electrochem 41:687–697

    Article  Google Scholar 

  14. Xu G, Yang L, Zhong M, Li C, Lu X, Kan X (2013) Selective recognition and electrochemical detection of p-nitrophenol based on a macroporous imprinted polymer containing gold nanoparticles, Microchim. Acta 180:1461–1469

    CAS  Google Scholar 

  15. Georgakilas V, Otyepka M, Bourlinos AB, Chandra V, Kim N, Kemp KC, Hobza P, Zboril R, Kim KS (2012) Functionalization of graphene: covalent and Non-covalent approaches, derivatives and applications. Chem Rev 112:6156–6214

    Article  CAS  Google Scholar 

  16. Gan T, Hu S (2011) Electrochemical sensors based on graphene materials. Microchim Acta 175:1–19

    Article  CAS  Google Scholar 

  17. Deng D, Pan X, Yu L, Cui Y, Jiang Y, Qi J, Li WX, Fu Q, Ma X, Xue Q, Sun G, Bao X (2011) Toward N-doped graphene via solvothermal synthesis. Chem Mater 23:1188–1193

    Article  CAS  Google Scholar 

  18. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565

    Article  CAS  Google Scholar 

  19. Hu C, Liu Y, Yang Y, Cui J, Huang Z, Wang Y, Yang L, Wang H, Xiao Y, Rong J (2013) One-step preparation of nitrogen-doped graphene quantum dots from oxidized debris of graphene oxide. J Mater Chem B 1:39–42

    Article  CAS  Google Scholar 

  20. Matter PH, Zhang L, Ozkan US (2006) The role of nanostructure in nitrogen-containing carbon catalysts for the oxygen reduction reaction. J Catal 239:83–96

    Article  CAS  Google Scholar 

  21. Jansen RJJ, Vanbekkum H (1995) XPS of nitrogen-containing functional groups on activated carbon. Carbon 33:1021–1027

    Article  CAS  Google Scholar 

  22. Nakayama Y, Soeda F, Ishitani A (1990) XPS study of the carbon fiber matrix interface. Carbon 28:21–26

    Article  CAS  Google Scholar 

  23. Malitesta C, Losito I, Sabbatini L, Zambonin PG (1995) New findings on polypyrrole chemical structure by XPS coupled to chemical derivatization labelling. J Electron Spectrosc Relat Phenom 76:629–634

    Article  CAS  Google Scholar 

  24. Niwa Y, Kobayash H, Tsuchiya T (1974) X‐ray photoelectron spectroscopy of tetraphenylporphin and phthalocyanine. J Chem Phys 60:799–807

    Article  CAS  Google Scholar 

  25. Malard LM, Pimenta MA, Dresselhaus G, Dresselhaus MS (2009) Raman spectroscopy in graphene. Phys Rep 473:51–87

    Article  CAS  Google Scholar 

  26. Yasuda S, Yu L, Kim J, Murakoshi K (2013) Selective nitrogen doping in graphene for oxygen reduction reactions. Chem Commun 49:9627–9629

    Article  CAS  Google Scholar 

  27. Brownson DAC, Munro LJ, Kampouris DK, Banks CE (2011) Electrochemistry of graphene: not such a beneficial electrode material? RSC Adv 1:978–988

    Article  CAS  Google Scholar 

  28. Harata K (1977) The Structure of the Cyclodextrin Complex. V. Crystal Structures of α-Cyclodextrin Complexes with p-Nitrophenol and p-Hydroxybenzoic Acid. Bull Chem Soc Jpn 50:1416–1424

    Article  CAS  Google Scholar 

  29. Hirata M, Gotou T, Horiuchi S, Fujiwara M, Ohba M (2004) Thin-film particles of graphite oxide 1: high-yield synthesis and flexibility of the particles. Carbon 42:2929–2937

    CAS  Google Scholar 

  30. Konkena B, Vasudevan S (2012) Understanding aqueous dispersibility of graphene oxide and reduced graphene oxide through pKa measurements. J Phys Chem Lett 3:867–872

    Article  CAS  Google Scholar 

  31. Zhou C, Liu Z, Dong Y, Li D (2009) Electrochemical behavior of o-nitrophenol at hexagonal mesoporous silica modified carbon paste electrodes. Electroanalysis 21:853–858

    CAS  Google Scholar 

  32. Li J, Kuang D, Feng Y, Zhang F, Xu Z, Liu M (2012) A graphene oxide-based electrochemical sensor for sensitive determination of 4-nitrophenol. J Hazard Mater 201–202:250–259

    Article  Google Scholar 

  33. Liu Z, Du J, Qiu C, Huang L, Ma H, Shen D, Ding Y (2009) Electrochemical sensor for detection of p-nitrophenol based on nanoporous gold. Electrochem Commun 11:1365–1368

    Article  CAS  Google Scholar 

  34. Niaz A, Fischer J, Barek J, Yosypchuk B, Bhanger SMI (2009) Voltammetric determination of 4-nitrophenol using a novel type of silver amalgam paste electrode. Electroanalysis 21:1786–1791

    Article  CAS  Google Scholar 

  35. Sun W, Yang MX, Jiang Q, Jiao K (2008) Direct electrocatalytic reduction of p-nitrophenol at room temperature ionic liquid modified electrode. Chin Chem Lett 19:1156–1158

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of the authors (K. Giribabu) wish to thank Department of Science and Technology (DST), Government of India, for the financial assistance in the form of INSPIRE fellowship (Inspire Fellow no :10226) under the AORC scheme. Authors thank National Center for Nanoscience and Nanotechnology (NCNSNT), University of Madras, for recording HR-TEM and XPS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vengidusamy Narayanan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 665 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giribabu, K., Suresh, R., Manigandan, R. et al. Preparation of nitrogen-doped reduced graphene oxide and its use in a glassy carbon electrode for sensing 4-nitrophenol at nanomolar levels. Microchim Acta 181, 1863–1870 (2014). https://doi.org/10.1007/s00604-014-1251-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-014-1251-4

Keywords

Navigation