Skip to main content
Log in

Fluorescence correlation spectroscopy of gold nanoparticles, and its application to an aptamer-based homogeneous thrombin assay

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We have studied the fluorescence properties and diffusion behaviors of gold nanoparticles (GNPs) in solution by using fluorescence correlation spectroscopy (FCS) at single molecule level. The GNPs display a high photo-saturation feature. Under illumination with strong laser light, they display higher brightness per particle (BPP) despite their low quantum yields. Based on the unique fluorescence properties and diffusion behaviors of GNPs, we have developed a sensitive and homogenous thrombin assay. It is based on a sandwich strategy and is making use of GNPs to which two different aptamers are conjugated. When the differently aptamer-labeled GNPs are mixed with solutions containing thrombin, the affinity reaction causes the GNPs to form dimers or oligomers. This leads to an increase in the diffusion time of the GNPs in the detection volume that is seen in FCS. The FCS method enables sensitive detection of the change in the characteristic diffusion time of the GNPs before and after the affinity reaction. Quantitative analysis of thrombin is based on the measurement of the change in the diffusion time. Under optimal conditions, the calibration plot is linear in the 0.5 nM to 110 nM thrombin concentration range, and the detection limit is 0.5 nM. The method was successfully applied to the direct determination of thrombin in human plasma.

On the basis of fluorescence correlation spectroscopy and recognition of aptamers, a new, sensitive and homogenous method for determination of thrombin in human plasma was developed using gold nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Weiss S (1999) Fluorescence spectroscopy of single biomolecules. Science 283(5408):1676–1683

    Article  CAS  Google Scholar 

  2. Chan WC, Nie S (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281(5385):2016–2018

    Article  CAS  Google Scholar 

  3. Ye C, Wang Y, Li C, Yu J, Hu Y (2013) Preparation of liposomes loaded with quantum dots, fluorescence resonance energy transfer studies, and near-infrared in-vivo imaging of mouse tissue. Microchim Acta 180(1–2):117–125

    Article  CAS  Google Scholar 

  4. Huang X, Ren J (2012) Nanomaterial-based chemiluminescence resonance energy transfer: a strategy to develop new analytical methods. Trac Trends Anal Chem 40:77–89

    Article  CAS  Google Scholar 

  5. Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T (2008) Quantum dots versus organic dyes as fluorescent labels. Nat Methods 5(9):763–775

    Article  CAS  Google Scholar 

  6. Shiohara A, Hoshino A, Hanaki K-I, Suzuki K, Yamamoto K (2004) On the cyto-toxicity caused by quantum dots. Microbiol Immunol 48(9):669–675

    Article  CAS  Google Scholar 

  7. Peyser LA, Vinson AE, Bartko AP, Dickson RM (2001) Photoactivated fluorescence from individual silver nanoclusters. Science 291(5501):103–106

    Article  CAS  Google Scholar 

  8. Lu Y, Huang X, Ren J (2013) Sandwich immunoassay for alpha-fetoprotein in human sera using gold nanoparticle and magnetic bead labels along with resonance Rayleigh scattering readout. Microchim Acta 180(7–8):635–642

    Article  CAS  Google Scholar 

  9. Huang CC, Yang Z, Lee KH, Chang HT (2007) Synthesis of highly fluorescent gold nanoparticles for sensing mercury (II). Angew Chem 119(36):6948–6952

    Article  Google Scholar 

  10. Mei Z, Deng Y, Chu H, Xue F, Zhong Y, Wu J, Yang H, Wang Z, Zheng L, Chen W (2013) Immunochromatographic lateral flow strip for on-site detection of bisphenol A. Microchim Acta 180(3–4):279–285

    Article  CAS  Google Scholar 

  11. Storhoff JJ, Lucas AD, Garimella V, Bao YP, Müller UR (2004) Homogeneous detection of unamplified genomic DNA sequences based on colorimetric scatter of gold nanoparticle probes. Nat Biotechnol 22(7):883–887

    Article  CAS  Google Scholar 

  12. Patra HK, Banerjee S, Chaudhuri U, Lahiri P, Dasgupta AK (2007) Cell selective response to gold nanoparticles. Nanomed-Nanotechnol 3(2):111–119

    Article  CAS  Google Scholar 

  13. Tcherniak A, Dominguez-Medina S, Chang W-S, Swanglap P, Slaughter LS, Landes CF, Link S (2011) One-photon plasmon luminescence and its application to correlation spectroscopy as a probe for rotational and translational dynamics of gold nanorods. J Phys Chem C 115(32):15938–15949

    Article  CAS  Google Scholar 

  14. Saha K, Agasti SS, Kim C, Li X, Rotello VM (2012) Gold nanoparticles in chemical and biological sensing. Chem Rev 112(5):2739–2779

    Article  CAS  Google Scholar 

  15. Gaiduk A, Yorulmaz M, Orrit M (2011) Correlated absorption and photoluminescence of single gold nanoparticles. ChemPhysChem 12(8):1536–1541

    Article  CAS  Google Scholar 

  16. Geddes CD, Parfenov A, Gryczynski I, Lakowicz JR (2003) Luminescent blinking of gold nanoparticles. Chem Phys Lett 380(3):269–272

    Article  CAS  Google Scholar 

  17. Loumaigne M, Vasanthakumar P, Lombardi A, Richard A, Débarre A (2013) One-photon excited luminescence of single gold particles diffusing in solution under pulsed illumination. Phys Chem Chem Phys 15:4154–4162

    Article  CAS  Google Scholar 

  18. Chen J, Irudayaraj J (2009) Quantitative investigation of compartmentalized dynamics of ErbB2 targeting gold nanorods in live cells by single molecule spectroscopy. ACS Nano 3(12):4071–4079

    Article  CAS  Google Scholar 

  19. Fang Y, Chang W-S, Willingham B, Swanglap P, Dominguez-Medina S, Link S (2012) Plasmon emission quantum yield of single gold nanorods as a function of aspect ratio. ACS Nano 6(8):7177–7184

    Article  CAS  Google Scholar 

  20. Goldys EM, Sobhan MA (2012) Fluorescence of colloidal gold nanoparticles is controlled by the surface adsorbate. Adv Funct Mater 22(9):1906–1913

    Article  CAS  Google Scholar 

  21. He H, Xie C, Ren J (2008) Nonbleaching fluorescence of gold nanoparticles and its applications in cancer cell imaging. Anal Chem 80(15):5951–5957

    Article  CAS  Google Scholar 

  22. Wang X, Zhao Q (2012) A fluorescent sandwich assay for thrombin using aptamer modified magnetic beads and quantum dots. Microchim Acta 178(3–4):349–355

    Article  CAS  Google Scholar 

  23. Hu J, Zheng P-C, Jiang J-H, Shen G-L, Yu R-Q, Liu G-K (2008) Electrostatic interaction based approach to thrombin detection by surface-enhanced Raman spectroscopy. Anal Chem 81(1):87–93

    Article  Google Scholar 

  24. Wang H, Liu Y, Liu C, Huang J, Yang P, Liu B (2010) Microfluidic chip-based aptasensor for amplified electrochemical detection of human thrombin. Electrochem Commun 12(2):258–261

    Article  CAS  Google Scholar 

  25. Dong C, Qian H, Fang N, Ren J (2006) Study of fluorescence quenching and dialysis process of CdTe quantum dots, using ensemble techniques and fluorescence correlation spectroscopy. J Phys Chem B 110(23):11069–11075

    Article  CAS  Google Scholar 

  26. Haustein E, Schwille P (2007) Fluorescence correlation spectroscopy: novel variations of an established technique. Annu Rev Biophys Biomol Struct 36:151–169

    Article  CAS  Google Scholar 

  27. Freeman RG, Hommer MB, Grabar KC, Jackson MA, Natan MJ (1996) Ag-clad Au nanoparticles: novel aggregation, optical, and surface-enhanced Raman scattering properties. J Phys Chem 100(2):718–724

    Article  CAS  Google Scholar 

  28. Xu CS, Cang H, Montiel D, Yang H (2007) Rapid and quantitative sizing of nanoparticles using three-dimensional single-particle tracking. J Phys Chem C 111(1):32–35

    Article  CAS  Google Scholar 

  29. Bowman LJ, Anderson CD, Chapman WC (2010) Topical recombinant human thrombin in surgical hemostasis. Semin Thromb Hemost 36:477–484

    Article  CAS  Google Scholar 

  30. Even-Ram S, Uziely B, Cohen P, Grisaru-Granovsky S, Maoz M, Ginzburg Y, Reich R, Vlodavsky I, Bar-Shavit R (1998) Thrombin receptor overexpression in malignant and physiological invasion processes. Nat Med 4(8):909–914

    Article  CAS  Google Scholar 

  31. Jayasena SD (1999) Aptamers: an emerging class of molecules that rival antibodies in diagnostics. Clin Chem 45(9):1628–1650

    CAS  Google Scholar 

  32. Bock LC, Griffin LC, Latham JA, Vermaas EH, Toole JJ (1992) Selection of single-stranded DNA molecules that bind and inhibit human thrombin. Nature 355:564–566

    Article  CAS  Google Scholar 

  33. Tasset DM, Kubik MF, Steiner W (1997) Oligonucleotide inhibitors of human thrombin that bind distinct epitopes. J Mol Biol 272(5):688–698

    Article  CAS  Google Scholar 

  34. Müller J, Becher T, Braunstein J, Berdel P, Gravius S, Rohrbach F, Oldenburg J, Mayer G, Pötzsch B (2011) Profiling of active thrombin in human blood by supramolecular complexes. Angew Chem Int Ed 50(27):6075–6078

    Article  Google Scholar 

  35. Zhao Q, Li X-F, Le XC (2011) Aptamer capturing of enzymes on magnetic beads to enhance assay specificity and sensitivity. Anal Chem 83(24):9234–9236

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the supports of NSFC (21075081, 20975067, 20905048, 21135004), National Basic Research Program of China (2009CB930400). We also thank Miss Yao Lu for her assistant in conjugation of GNPs with aptamers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jicun Ren.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 430 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, Z., Huang, X., Dong, C. et al. Fluorescence correlation spectroscopy of gold nanoparticles, and its application to an aptamer-based homogeneous thrombin assay. Microchim Acta 181, 723–730 (2014). https://doi.org/10.1007/s00604-013-1132-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-013-1132-2

Keywords

Navigation