Skip to main content
Log in

Amperometric sensor for ascorbic acid based on a glassy carbon electrode modified with gold-silver bimetallic nanotubes in a chitosan matrix

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We report on an amperometric sensor for ascorbic acid (AA) that is based on highly dense gold-silver nanotubes in a chitosan film on a glassy carbon electrode. The nanotubes were synthesized by a poly(vinyl pyrrolidone)-mediated polyol method employing a replacement reaction with silver nanowires as templates, and were characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction. Under the optimal conditions, the sensor exhibits good electrocatalytic activity towards the oxidation of AA, and this enables the determination of AA in the 5 μM to 2 mM concentration range, with a detection limit at 2 μM (at an S/N of 3). The response time is 2 s. The sensor displays good reproducibility, selectivity, sensitivity, and long-term stability.

In this paper, an amperometric electrochemical sensor for detection of ascorbic acid was fabricated based on highly dense gold-silver nanotubes and chitosan film. The biosensor showed good reproducibility, anti-interferant ability, high sensitivity, low detection limit, fast response, and long-term stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kumar SA, Lo PH, Chen SM (2008) Electrochemical selective determination of ascorbic acid at redox active polymer modified electrode derived from direct blue 71. Biosens Bioelectron 24:518–523

    Article  CAS  Google Scholar 

  2. Wen D, Guo S, Dong S, Wang E (2010) Ultrathin Pd nanowire as a highly active electrode material for sensitive and selective detection of ascorbic acid. Biosens Bioelectron 26:1056–1061

    Article  CAS  Google Scholar 

  3. Tiwari I, Singh KP, Singh M, Banks CE (2012) Polyaniline/polyacrylic acid/multi-walled carbon nanotube modified electrodes for sensing ascorbic acid. Anal Methods 4:118–124

    Article  CAS  Google Scholar 

  4. Suntornsuk L, Gritsanapun W, Nilkamhank S, Paochom A (2002) Quantitation of vitamin C content in herbal juice using direct titration. J Pharm Biomed Anal 28:849–855

    Article  CAS  Google Scholar 

  5. Koncki R, Lenarczuk T, Glab S (1999) Disposable integrated cuvette test for quantitative determination of vitamin C in pharmaceutical products. Anal Chim Acta 379:69–74

    Article  CAS  Google Scholar 

  6. Liu ZH, Wang QL, Mao LY, Cai RX (2000) Highly sensitive spectrofluorimetric determination of ascorbic acid based on its enhancement effect on a mimetic enzyme-catalyzed reaction. Anal Chim Acta 413:167–173

    Article  CAS  Google Scholar 

  7. Polasek M, Skala P, Opletal L, Jahodar L (2004) Rapid automated assay of anti-oxidation/radical-scavenging activity of natural substances by sequential injection technique (SIA) using spectrophotometric detection. Anal Bioanal Chem 379:754–758

    Article  CAS  Google Scholar 

  8. Wimalasena K, Dharmasena S (1993) Continuous spectrophotometric assay for ascorbate oxidase based on a novel chromophoric substrate, 2-aminoascrbic acid. Anal Biochem 210:58–62

    Article  CAS  Google Scholar 

  9. Lupu S, Mucci A, Pigani L, Seeber R, Zanardi C (2002) Polythiophene derivative conducting polymer modified electrodes and microelectrodes for determination of ascorbic acid. Effect of possible interferents. Electroanalysis 14:519–525

    Article  CAS  Google Scholar 

  10. Zhang X, Lai G, Yu A, Zhang H (2013) A glassy carbon electrode modified with a polyaniline doped with silicotungstic acid and carbon nanotubes for the sensitive amperometric determination of ascorbic acid. Microchim Acta 180:437–443

    Article  CAS  Google Scholar 

  11. Dotzauer DM, Dai JH, Sun L, Bruening ML (2006) Catalytic membranes prepared using layer-by-layer adsorption of polyelectrolyte/metal nanoparticle films in porous supports. Nano Lett 6:2268–2272

    Article  CAS  Google Scholar 

  12. Zhang X, Cao Y, Yu S, Yang F, Xi P (2013) An electrochemical biosensor for ascorbic acid based on carbon-supported PdNi nanoparticles. Biosens Bioelectron 44:183–190

    Article  Google Scholar 

  13. Mayorga-Martinez CC, Guix M, Madrid RE, Merkoci A (2012) Bimetallic nanowires as electrocatalysts for nonenzymatic real-time impedancimetric detection of glucose. Chem Commun (Camb) 48:1686–1688

    Article  CAS  Google Scholar 

  14. Tsai TH, Thiagarajan S, Chen SM (2010) Green synthesized Au–Ag bimetallic nanoparticles modified electrodes for the amperometric detection of hydrogen peroxide. J Appl Electrochem 40:2071–2076

    Article  CAS  Google Scholar 

  15. Zahran EM, Prodromidis MI, Bhattacharyya D, Bachas LG (2012) Palladium nanoparticle-decorated iron nanotubes hosted in a polycarbonate porous membrane: development, characterization, and performance as electrocatalysts of ascorbic acid. Anal Bioanal Chem 404:1637–1642

    Article  CAS  Google Scholar 

  16. Lian W, Liu S, Yu J, Li J, Cui M, Xu W, Huang J (2013) Electrochemical sensor using neomycin-imprinted film as recognition element based on chitosan-silver nanoparticles/graphene-multiwalled carbon nanotubes composites modified electrode. Biosens Bioelectron 44:70–76

    Article  CAS  Google Scholar 

  17. Zhang Y, Xu C, Li B, Li Y (2013) In situ growth of positively-charged gold nanoparticles on single-walled carbon nanotubes as a highly active peroxidase mimetic and its application in biosensing. Biosens Bioelectron 43:205–210

    Article  CAS  Google Scholar 

  18. Shin KS, Kim JH, Kim IH, Kim K (2012) Poly(ethylenimine)-stabilized hollow gold-silver bimetallic nanoparticles: fabrication and catalytic application. Bull Korean Chem Soc 33:906–910

    Article  CAS  Google Scholar 

  19. Wu S, Schell AW, Lublow M, Kaiser J, Aichele T, Schietinger S, Polzer F, Kühn S, Guo X, Benson O, Ballauff M, Lu Y (2012) Silica-coated Au/Ag nanorods with tunable surface plasmon bands for nanoplasmonics with single particles. Colloid Polym Sci 291:585–594

    Article  Google Scholar 

  20. Fan M, Lai FJ, Chou HL, Lu WT, Hwang BJ, Brolo AG (2013) Surface-enhanced Raman scattering (SERS) from Au:Ag bimetallic nanoparticles: the effect of the molecular probe. Chem Sci 4:509–515

    Article  CAS  Google Scholar 

  21. Manivannan S, Ramaraj R (2009) Core-shell Au/Ag nanoparticles embedded in silicate sol–gel network for sensor application towards hydrogen peroxide. J Chem Sci 121:735–743

    Article  CAS  Google Scholar 

  22. Sanghavi BJ, Srivastava AK (2013) Adsorptive stripping voltammetric determination of imipramine, trimipramine and desipramine employing titanium dioxide nanoparticles and an Amberlite XAD-2 modified glassy carbon paste electrode. Analyst 138:1395–1404

    Article  CAS  Google Scholar 

  23. Sanghavi BJ, Hirsch G, Karna SP, Srivastava AK (2012) Potentiometric stripping analysis of methyl and ethyl parathion employing carbon nanoparticles and halloysite nanoclay modified carbon paste electrode. Anal Chim Acta 735:37–45

    Article  CAS  Google Scholar 

  24. Sanghavi BJ, Srivastava AK (2011) Adsorptive stripping differential pulse voltammetric determination of venlafaxine and desvenlafaxine employing Nafion–carbon nanotube composite glassy carbon electrode. Electrochim Acta 56:4188–4196

    Article  CAS  Google Scholar 

  25. Sanghavi BJ, Srivastava AK (2010) Simultaneous voltammetric determination of acetaminophen, aspirin and caffeine using an in situ surfactant-modified multiwalled carbon nanotube paste electrode. Electrochim Acta 55:8638–8648

    Article  CAS  Google Scholar 

  26. Wang L, Gao X, Jin L, Wu Q, Chen Z, Lin X (2013) Amperometric glucose biosensor based on silver nanowires and glucose oxidase. Sensors Actuators B Chem 176:9–14

    Article  CAS  Google Scholar 

  27. Gao X, Jin L, Wu Q, Chen Z, Lin X (2012) A nonenzymatic hydrogen peroxide sensor based on silver nanowires and chitosan film. Electroanalysis 24:1771–1777

    CAS  Google Scholar 

  28. Qian L, Yang XR (2006) Composite film of carbon nanotubes and chitosan for preparation of amperometric hydrogen peroxide biosensor. Talanta 68:721–727

    Article  CAS  Google Scholar 

  29. Korte KE, Skrabalak SE, Xia Y (2008) Rapid synthesis of silver nanowires through a CuCl or CuCl2− mediated polyol process. J Mater Chem 18:437–441

    Article  CAS  Google Scholar 

  30. Zhang YX, Gao G, Qian QR, Cui DX (2012) Chloroplasts-mediated biosynthesis of nanoscale Au-Ag alloy for 2-butanone assay based on electrochemical sensor. Nanoscale Res Lett 7:1–8

    Article  CAS  Google Scholar 

  31. Wang XX, Liu JM, Jiang SL, Jiao L, Lin LP, Cui ML, Zhang XY, Zhang LH, Zheng ZY (2013) Non-aggregation colorimetric sensor for detecting vitamin C based on surface plasmon resonance of gold nanorods. Sensors Actuators B Chem 182:205–210

    Article  CAS  Google Scholar 

  32. Castro SSL, Balbo VR, Barbeira PJS, Stradiotto NR (2001) Flow injection amperometric detection of ascorbic acid using a Prussian Blue film-modified electrode. Talanta 55:249–254

    Article  CAS  Google Scholar 

  33. Kul D, Ghica ME, Pauliukaite R, Brett CM (2013) A novel amperometric sensor for ascorbic acid based on poly(Nile blue A) and functionalised multi-walled carbon nanotube modified electrodes. Talanta 111:76–84

    Article  CAS  Google Scholar 

  34. Tashkhourian J, Nezhad MRH, Khodavesi J, Javadi S (2009) Silver nanoparticles modified carbon nanotube paste electrode for simultaneous determination of dopamine and ascorbic acid. J Electroanal Chem 633:85–91

    Article  CAS  Google Scholar 

  35. Kit-Anan W, Olarnwanich A, Sriprachuabwong C, Karuwan C, Tuantranont A, Wisitsoraat A, Srituravanich W, Pimpin A (2012) Disposable paper-based electrochemical sensor utilizing inkjet-printed Polyaniline modified screen-printed carbon electrode for Ascorbic acid detection. J Electroanal Chem 685:72–78

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Natural Science Foundation of China (No. 30800247, 20805043).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qi Wu or Xianfu Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, P., Gao, X., Wang, L. et al. Amperometric sensor for ascorbic acid based on a glassy carbon electrode modified with gold-silver bimetallic nanotubes in a chitosan matrix. Microchim Acta 181, 231–238 (2014). https://doi.org/10.1007/s00604-013-1104-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-013-1104-6

Keywords

Navigation