Skip to main content
Log in

Label-free aptasensor for thrombin using a glassy carbon electrode modified with a graphene-porphyrin composite

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We report on an electrochemical aptasensor for the ultrasensitive determination of thrombin. A glassy carbon electrode modified with a graphene-porphyrin nanocomposite exhibits excellent electrochemical activity and can be used as a redox probe in differential pulse voltammetry of the porphyrin on its surface. The thrombin aptamer is then immobilized via p-stacking interactions between aptamer and graphene and π-π stacking with porphyrin simultaneously. The resulting electrochemical aptasensor displays a linear response to thrombin in the 5–1,500 nM concentration range and with a limit of detection of 0.2 nM (at an S/N of 3). The sensor benefits from the synergetic effects of graphene (with its high conductivity and high surface area), of the porphyrin (possessing excellent electrochemical activity), and of the aptamer (with its high affinity and specificity). This kind of aptasensor conceivably represents a promising tool for bioanalytical applications.

The representation of the sensing procedure for analysis of thrombin based on the TA/GN-Por/GCE by an electrochemical strategy

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Holland CA, Henry AT, Whinna HC, Church FC (2000) Effect of oligodeoxynucleotide thrombin aptamer on thrombin inhibition by heparin cofactor II and antithrombin. FEBS Lett 484:87–91

    Article  CAS  Google Scholar 

  2. Li YF, Han M, Bai HY, Wu Y, Dai ZH, Bao JC (2011) A sensitive electrochemical aptasensor based on water soluble CdSe quantum dots (QDs) for thrombin determination. Electrochim Acta 56:7058–7063

    Article  CAS  Google Scholar 

  3. Zhao J, Zhang YY, Li HT, Wen YQ, Fan XY, Lin FB, Tan L, Yao SZ (2011) Ultrasensitive electrochemical aptasensor for thrombin based on the amplification of aptamer–AuNPs–HRP conjugates. Biosens Bioelectron 26:2297–2303

    Article  CAS  Google Scholar 

  4. Lu Y, Zhu NN, Yu P, Mao LQ (2008) Aptamer-based electrochemical sensors that are not based on the target binding-induced conformational change of aptamers. Analyst 133:1256–1260

    Article  CAS  Google Scholar 

  5. Liu S, Xing XR, Yu JH, Lian WJ, Li J, Cui M, Huang JD (2012) A novel label-free electrochemical aptasensor based on graphene–polyaniline composite film for dopamine determination. Biosens Bioelectron 36:186–191

    Article  Google Scholar 

  6. Zhao J, Chen GF, Zhu L, Li GX (2011) graphene quantum dots-based platform for the fabrication of electrochemical biosensors. Electrochem Commun 13:31–33

    Article  CAS  Google Scholar 

  7. Yin XB, Xin YY, Zhao Y (2009) Label-free electrochemiluminescent aptasensor with attomolar mass detection limits based on a Ru(phen)3 2+-double-strand DNA composite film electrode. Anal Chem 81:9299–9305

    Article  CAS  Google Scholar 

  8. Guo YS, Jia XP, Zhang SS (2011) DNA cycle amplification device on magnetic microbeads for determination of thrombin based on graphene oxide enhancing signal-on electrochemiluminescence. Chem Commun 47:725–727

    Article  CAS  Google Scholar 

  9. Liao YH, Yuan R, Chai YQ, Zhou Y, Yuan YL, Bai LJ, Mao L, Yuan SR (2011) In-situ produced ascorbic acid as coreactant for an ultrasensitive solid-state tris(2,2′-bipyridyl) ruthenium(II) electrochemiluminescence aptasensor. Biosens Bioelectron 26:4815–4818

    Article  CAS  Google Scholar 

  10. Bao L, Liu ZH, Pang DW (2011) Aptamer biosensor based on fluorescence resonance energy transfer from upconverting phosphors to carbon nanoparticles for thrombin detection in human plasma. Anal Chem 83:8130–8137

    Article  Google Scholar 

  11. Lao YH, Peck K, Chen LC (2009) Enhancement of aptamer microarray sensitivity through spacer optimization and avidity effect. Anal Chem 81:1747–1754

    Article  CAS  Google Scholar 

  12. Chena CK, Huangb CC, Chang HT (2010) Label-free colorimetric detection of picomolar thrombin in blood plasma using a gold nanoparticle-based assay. Biosens Bioeletron 25:1922–1927

    Article  Google Scholar 

  13. Deng Y, Deng QP, Zhang DW, Zhou YL, Zhang XX (2012) A label-free aptasensor for the sensitive and specific detection of cocaine using supramolecular aptamer fragments/target complex by electrochemical impedance spectroscopy. Talanta 92:65–71

    Article  Google Scholar 

  14. Guo SJ, Du Y, Yang X, Dong SJ, Wang EK (2011) Solid-state label-free integrated aptasensor based on graphene-mesoporous silica–gold nanoparticle hybrids and silver microspheres. Anal Chem 83:8035–8040

    Article  CAS  Google Scholar 

  15. Du Y, Chen CG, Yin JY, Li BL, Zhou M, Dong SJ, Wang EK (2010) Solid-state probe based electrochemical aptasensor for cocaine: a potentially convenient, sensitive, repeatable, and integrated sensing platform for drugs. Anal Chem 82:1556–1563

    Article  CAS  Google Scholar 

  16. Lee CY, Wu KY, Su HL, Hung HY, Hsieh YZ (2013) Sensitive label-free electrochemical analysis of human IgE using an aptasensor with cDNA amplification. Biosens Bioelectron 39:133–138

    Article  CAS  Google Scholar 

  17. Al-Mashat L, Shim K, Kalantar-zadeh K, Plessis JD, Han SH, Kojima RW, Kaner RB, Li D, Gou XL, Ippolito SJ, Wlodarski W (2010) Graphene/polyaniline nanocomposite for hydrogen sensing. J Phys Chem C 114:16168–16173

    Article  CAS  Google Scholar 

  18. Hong WJ, Bai H, Xu Y, Yao ZY, Gu ZZ, Shi GQ (2010) Preparation of gold nanoparticle/graphene composites with controlled weight contents and their application in biosensors. J Phys Chem C 114:1822–1826

    Article  CAS  Google Scholar 

  19. Yang YC, Dong SW, Shen T, Jian CX, Chang HJ, Li Y, Zhou JX (2011) Amplified immunosensing based on ionic liquid-doped chitosan film as a matrix and Au nanoparticle decorated graphene nanosheets as labels. Electrochim Acta 56:6021–6025

    Article  CAS  Google Scholar 

  20. Briza PL, Arben M (2012) Carbon nanotubes and graphene in analytical sciences. Microchim Acta 179:1–16

    Article  Google Scholar 

  21. Guldi DM, Rahman A, Sgobba V, Ehli C (2006) Multifunctional molecular carbon materials—from fullerenes to carbon nanotubes. Chem Soc Rev 35:471–487

    Article  CAS  Google Scholar 

  22. Xu YX, Zhao L, Bai H, Hong WJ, Li C, Shi GQ (2009) Chemically converted graphene induced molecular flattening of 5,10,15,20-tetrakis(1-methyl-4-pyridinio)porphyrin and its application for optical detection of cadmium(II) ions. J Am Chem Soc 131:13490–13497

    Article  CAS  Google Scholar 

  23. Lu CH, Yang HH, Zhu CL, Chen X, Chen GN (2009) A grapheme platform for sensing biomolecules. Angew Chem Int Ed 48:4785–4787

    Article  CAS  Google Scholar 

  24. Romera C, Bombards O, Bonnet R, Gomez D, Dumy P, Calsou P, Gwan JF, Lin JH, Defrancq E, Pratviel G (2011) Improvement of porphyrins for G-quadruplex DNA targeting. Biochimie 93:1310–1317

    Article  CAS  Google Scholar 

  25. Guo YJ, Guo SJ, Ren JT, Zhai YM, Dong SH, Wang EK (2010) Cyclodextrin functionalized graphene nanosheets with high supramolecular recognition capability: synthesis and host_guest inclusion for enhanced electrochemical performance. ACS Nano 4:4001–4010

    Article  CAS  Google Scholar 

  26. Graf D, Molitor F, Ensslin K, Stampfer C, Jungen A, Hierold C, Wirtz L (2007) Spatially resolved Raman spectroscopy of single- and Few-layer graphene. Nano Lett 7:238–242

    Article  CAS  Google Scholar 

  27. Tu WW, Lei JP, Zhang SY, Ju HX (2010) Characterization, direct electrochemistry, and amperometric biosensing of graphene by noncovalent functionalization with picket-fence porphyrin. Chem Eur J 16:10771–10777

    Article  CAS  Google Scholar 

  28. Du Y, Li B, Wei H, Wang Y, Wang E (2008) Multifunctional label-free electrochemical biosensor based on an integrated aptamer. Anal Chem 80:5110–5117

    Article  CAS  Google Scholar 

  29. Wang J, Munir A, Li Z, Zhou HS (2010) Aptamer-Au NPs conjugates-accumulated methylene blue for the sensitive electrochemical immunoassay of protein. Talanta 81:63–67

    Article  CAS  Google Scholar 

  30. Gou YJ, Gou SJ, Fang YX, Dong SJ (2010) Gold nanoparticle/carbon nanotube hybrids as an enhanced material for sensitive amperometric determination of tryptophan. Electrochim Acta 55:3927–3931

    Article  Google Scholar 

  31. Li XX, Shen LH, Zhang DD, Qi HL, Gao Q, Ma F, Zhang CX (2008) Electrochemical impedance spectroscopy for study of aptamer–thrombin interfacial interactions. Biosens Bioeletron 23:1624–1630

    Article  CAS  Google Scholar 

  32. Wang YH, Bao L, Liu ZH, Pang DW (2011) Aptamer biosensor based on fluorescence resonance energy transfer from upconverting phosphors to carbon nanoparticles for thrombin detection in human plasma. Anal Chem 83:8130–8137

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research work was supported by the National Natural Science Foundation of China (Nos. 21275093, 21175086 and 81241137).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anjia Chen or Chuan Dong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, H., Shuang, S., Sun, L. et al. Label-free aptasensor for thrombin using a glassy carbon electrode modified with a graphene-porphyrin composite. Microchim Acta 181, 189–196 (2014). https://doi.org/10.1007/s00604-013-1093-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-013-1093-5

Keywords

Navigation