Skip to main content
Log in

Hydrogen peroxide biosensor based on direct electrochemistry of hemoglobin immobilized on gold nanoparticles in a hierarchically porous zeolite

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Highly dispersed gold nanoparticles (AuNPs) were introduced into a hierarchically porous zeolite of the MFI type that contains mesopores and an inherently microporous structure. These represent a novel matrix for the immobilization of biomolecules. The composites were characterized by FTIR, X-ray diffraction, UV–vis spectroscopy, transmission electron microscopy, nitrogen sorption measurements, and electrochemical impedance spectroscopy. The crystallinity and morphology of the zeolite is not compromised by incorporating the AuNPs with their size of 3–20 nm. A sensor for hydrogen peroxide (H2O2) was fabricated by incorporating hemoglobin into the matrix and placing it on the surface of a glassy carbon electrode. The resulting biosensor exhibits excellent bioelectrocatalytic capability for the reduction of H2O2. The amperometric response at −0.4 V linearly depends on H2O2 in the 1.0 μM to 18 mM concentration range. The detection limit is 0.8 μM (at an S/N of 3). Its good sensitivity, stability and reproducibility make the modified hierarchically porous zeolite a promising new matrix material for protein immobilization and the construction of biosensors.

Amperometric responses of Hb/Au-MFIOH/GCE upon successive additions of different concentrations of H2O2 to 0.1 M pH 7.0 phosphate buffer solution at applied potential of −0.4 V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT (1992) A new family of mesoporous molecular sieves prepared with liquid crystal templates. J Am Chem Soc 114(27):10834–10843

    Article  CAS  Google Scholar 

  2. Mohammad H, Nasrin S, Morteza E, Peyman S (2012) Mesoporous silica-based materials for use in electrochemical enzyme nanobiosensors. Trends Anal Chem 33(3):117–129

    Google Scholar 

  3. Walcarius A (2008) Electroanalytical applications of microporous zeolites and mesoporous (organo) silicas: recent trends. Electroanalysis 20(7):711–738

    Article  CAS  Google Scholar 

  4. Dai ZH, Bao JC, Yang XD, Ju HX (2008) A bienzyme channeling glucose sensor with a wide concentration range based on co-entrapment of enzymes in SBA-15 mesopores. Biosens Bioelectron 23(7):1070–1076

    Article  CAS  Google Scholar 

  5. Lin JH, He CY, Zhang SS (2009) Immunoassay channels for α-fetoprotein based on encapsulation of biorecognition molecules into SBA-15 mesopores. Anal Chim Acta 643(1):90–94

    Article  CAS  Google Scholar 

  6. Cai YY, Li H, Du B, Yang MH, Li Y (2011) Ultrasensitive electrochemical immunoassay for BRCA1 using BMIM ·BF4-coated SBA-15 as labels and functionalized graphene as enhancer. Biomaterials 32(8):2117–2123

    Article  CAS  Google Scholar 

  7. Holm MS, Taarning E, Egeblad K, Christensen CH (2011) Catalysis with hierarchical zeolites. Catal Today 168(1):3–16

    Article  CAS  Google Scholar 

  8. Olson DH, Kokotailo GT, Lawton SL, Meier WM (1981) Crystal structure and structure-related properties of ZSM-5. J Phys Chem 85(15):2238–2243

    Article  CAS  Google Scholar 

  9. Groen J, Bach T, Ziese U (2005) Creation of hollow zeolite architectures by controlled desilication of Al-zoned ZSM-5 crystals. J Am Chem Soc 127(31):10792–10793

    Article  CAS  Google Scholar 

  10. Verboekend D, Pérez-Ramírez J (2011) Design of hierarchical zeolite catalysts by desilication. Catal Sci Technol 1(6):879–890

    Article  CAS  Google Scholar 

  11. Peng S, Gao Q, Wang Q, Shi JL (2004) Layered structural heme protein magadiite nanocomposites with high enzyme-like peroxidase activity. Chem Mater 16(13):2675–2684

    Article  CAS  Google Scholar 

  12. Zeng XD, Wei WZ, Li XF, Zeng JX, Wu L (2007) Direct electrochemistry and electrocatalysis of hemoglobin entrapped in semi-interpenetrating polymer network hydrogel based on polyacrylamide and chitosan. Bioelectrochemistry 71(2):135–141

    Article  CAS  Google Scholar 

  13. Dai ZH, Liu SQ, Ju HX, Chen HY (2004) Direct electron transfer and enzymatic activity of hemoglobin in a hexagonal mesoporous silica matrix. Biosens Bioelectron 19(8):861–867

    Article  CAS  Google Scholar 

  14. Li JX, Xiong ZY, Zhou LH, Han X, Liu HL (2010) Effects of pore structure of mesoporous silicas on the electrochemical properties of hemoglobin. Microporous Mesoporous Mater 130(1):333–337

    Article  CAS  Google Scholar 

  15. Zhang L, Zhang Q, Li JH (2007) Direct electrochemistry and electrocatalysis of hemoglobin immobilized in bimodal mesoporous silica and chitosan inorganic–organic hybrid film. Electrochem Commun 9(7):1530–1535

    Article  CAS  Google Scholar 

  16. Xian YZ, Xian Y, Zhou LH, Wu FH, Jin LT (2007) Encapsulation hemoglobin in ordered mesoporous silicas: influence factors for immobilization and bioelectrochemistry. Electrochem Commun 9(1):142–148

    Article  CAS  Google Scholar 

  17. Wang J (2012) Electrochemical biosensing based on noble metal nanoparticles. Microchim Acta 177(3–4):245–270

    CAS  Google Scholar 

  18. Cheng XW, Meng QY, Chen JY, Long YC (2012) A facile route to synthesize mesoporous ZSM-5 zeolite incorporating high ZnO loading in mesopores. Microporous Mesoporous Mater 153:198–203

    Article  CAS  Google Scholar 

  19. Lee B, Ma Z, Zhang ZT, Park C, Dai S (2009) Influences of synthesis conditions and mesoporous structures on the gold nanoparticles supported on mesoporous silica hosts. Microporous Mesoporous Mater 122(1):160–167

    Article  CAS  Google Scholar 

  20. Hao YJ, Chong YZ, Li SR, Yang HQ (2012) Controlled synthesis of Au nanoparticles in the nanocages of SBA-16: improved activity and enhanced recyclability for the oxidative esterification of alcohols. J Phys Chem C 116(11):6512–6519

    Article  CAS  Google Scholar 

  21. Storhoff JJ, Lazarides AA, Mucic RC, Mirkin CA, Letsinger RL (2000) What controls the optical properties of DNA-linked gold nanoparticle assemblies? J Am Chem Soc 122(19):4640–4650

    Article  CAS  Google Scholar 

  22. Olson DH, Haag WO, Lago RM (1980) Chemical and physical properties of the ZSM-5 substitutional series. J Catal 61(2):390–396

    Article  CAS  Google Scholar 

  23. Jiang Q, Wu ZY, Wang YM, Cao Y, Zhou CF, Zhu JH (2006) Fabrication of photoluminescent ZnO/SBA-15 through directly dispersing zinc nitrate into the as-prepared mesoporous silica occluded with template. J Mater Chem 16(16):1536–1542

    Article  CAS  Google Scholar 

  24. Bond GC, Louis C (2006) Catalysis by gold. Imperial College Press, London

    Google Scholar 

  25. Laviron E (1979) General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J Electroanal Chem Interfacial Electrochem 101(1):19–28

    Article  CAS  Google Scholar 

  26. Wang SF, Chen T, Zhang ZL, Shen XC, Lu ZX (2005) Direct electrochemistry and electrocatalysis of heme proteins entrapped in agarose hydrogel films in room-temperature ionic liquids. Langmuir 21(20):9260–9266

    Article  CAS  Google Scholar 

  27. Chen X, Hu N, Zeng Y, Rusling JF, Yang J (1999) Ordered electrochemically active films of hemoglobin, didodecyldimethylammonium ions, and clay. Langmuir 15(20):7022–7030

    Article  CAS  Google Scholar 

  28. Nassar AEF, Willis WS, Rusling JF (1995) Electron transfer from electrodes to myoglobin: facilitated in surfactant films and blocked by adsorbed biomacromolecules. Anal Chem 67(14):2386–2392

    Article  CAS  Google Scholar 

  29. Wang YH, Yu CM, Pan ZQ, Wang YF, Guo JW (2013) A gold electrode modified with hemoglobin and the chitosan@ Fe3O4 nanocomposite particles for direct electrochemistry of hydrogen peroxide. Microchim Acta 180:659–667

    Article  CAS  Google Scholar 

  30. Dong SY, Li N, Zhang PH, Li YS, Chen Z (2012) Fabrication of hemoglobin/ionic liquid modified carbon paste electrode based on the electrodeposition of gold nanoparticles/CdS quantum dots and its electrochemical application. Electroanalysis 24(7):1554–1560

    Article  CAS  Google Scholar 

  31. Chen B, Wang H, Zhang HY, He ZX, Zhou YZ (2012) A novel hydrogen peroxide sensor based on hemoglobin immobilized PAn–SiO2/DTAB composite film. J Mol Liq 171:23–28

    Article  CAS  Google Scholar 

  32. Sun W, Qin P, Zhao RJ, Jiao K (2010) Direct electrochemistry and electrocatalysis of hemoglobin on gold nanoparticle decorated carbon ionic liquid electrode. Talanta 80:2177–2181

    Article  CAS  Google Scholar 

  33. Wei NN, Xin X, Du JY, Li JL (2011) A novel hydrogen peroxide biosensor based on the immobilization of hemoglobin on three-dimensionally ordered macroporous (3DOM) gold-nanoparticle-doped titanium dioxide (GTD) film. Biosens Bioelectron 26:3602–3607

    Article  CAS  Google Scholar 

  34. Xu J, Liu C, Teng Y (2010) Direct electrochemistry and electrocatalysis of hydrogen peroxide using hemoglobin immobilized in hollow zirconium dioxide spheres and sodium alginate films. Microchim Acta 169(1–2):181–186

    CAS  Google Scholar 

  35. Xu J, Liu C, Wu Z (2011) Direct electrochemistry and enhanced electrocatalytic activity of hemoglobin entrapped in graphene and ZnO nanosphere composite film. Microchim Acta 172(3–4):425–430

    CAS  Google Scholar 

Download references

Acknowledgments

This work is financed by National Natural Science Foundation of China (No. 21001027 and 61071040) and Shanghai Nature Science Foundation (Grant:13ZR1411900).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junping Dong.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 557 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ren, L., Dong, J., Cheng, X. et al. Hydrogen peroxide biosensor based on direct electrochemistry of hemoglobin immobilized on gold nanoparticles in a hierarchically porous zeolite. Microchim Acta 180, 1333–1340 (2013). https://doi.org/10.1007/s00604-013-1064-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-013-1064-x

Keywords

Navigation