Skip to main content

Advertisement

Log in

Picoliter droplet microfluidic immunosorbent platform for point-of-care diagnostics of tetanus

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We have developed a sensitive, specific, rapid and low cost picoliter microsphere-based platform for bioanalyte detection and quantification. In this method, a biological sample, biosensing microspheres, and fluorescently labeled detection (secondary) antibodies are co-encapsulated to capture the analyte (here: human anti-tetanus immunoglobulin G) on the surface of the microsphere in microfluidic pL-sized droplets. The absorption of the analyte and detecting antibodies on the microsphere concentrate the fluorescent signal in correlation with analyte concentration. Using our platform and commercially available antibodies, we were able to quantify anti-tetanus antibodies in human serum. In comparison to standard bulk immunosorbent assays, the microfluidic droplet platform presented here reduces the reagent volume by four orders of magnitude, while fast reagent mixing reduces the detection time from hours to minutes. We consider this platform to be a major leap forward in the miniaturization of immunosorbent assays and to provide a rapid and low cost tool for global point-of-care.

We have developed a sensitive, specific, rapid and low cost pico-liter microsphere based platform for detection and quantification of human anti-tetanus immunoglobulin G. In this method, a biological sample, biosensing microspheres, and fluorescently labeled detection antibodies are co-encapsulated to capture the analyte on the surface of the microsphere in microfluidic pL-sized droplets. Using our platform and commercially available antibodies, we quantified the anti-tetanus antibodies content in human serum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pai NP, Vadnais C, Denkinger C, Engel N, Pai M (2012) Point-of-care testing for infectious diseases: diversity, complexity, and barriers in low- and middle-income countries. PLoS Med 9(9):e1001306

    Article  Google Scholar 

  2. Mabey DC, Sollis KA, Kelly HA, Benzaken AS, Bitarakwate E, Changalucha J, Chen X-S, Yin Y-P, Garcia PJ, Strasser S, Chintu N, Pang T, Terris-Prestholt F, Sweeney S, Peeling RW (2012) Point-of-care tests to strengthen health systems and save newborn lives: the case of syphilis. PLoS Med 9(6):e1001233

    Article  Google Scholar 

  3. Scott T (2012) Point-of-care tetanus immunoassay: an audit of unscheduled tetanus prophylaxis. Int J Orthop Trauma Nurs 16(2):97–103

    Article  Google Scholar 

  4. Chin CD, Laksanasopin T, Cheung YK, Steinmiller D, Linder V, Parsa H, Wang J, Moore H, Rouse R, Umviligihozo G, Karita E, Mwambarangwe L, Braunstein SL, van de Wijgert J, Sahabo R, Justman JE, El-Sadr W, Sia SK (2012) Microfluidics-based diagnostics of infectious diseases in the developing world. Nat Med 17(8):1015–1019

    Article  Google Scholar 

  5. Andries A-C, Duong V, Ngan C, Ong S, Huy R, Sroin KK, Te VYB, Try PL, Buchy P (2012) Field evaluation and impact on clinical management of a rapid diagnostic kit that detects dengue NS1, IgM and IgG. PLoS Negl Trop Dis 6(12):e1993

    Article  CAS  Google Scholar 

  6. Leng SX, McElhaney JE, Walston JD, Xie D, Fedarko NE, Kuchel GA (2006) Elisa and multiplex technologies for cytokine measurement in inflammation and aging research. J Gerontol A Biol Sci Med Sci 63(8):879–884

    Article  Google Scholar 

  7. Konry T, Bale S, Bhushan A, Shen K, Seker E, Polyak B, Yarmush M (2012) Particles and microfluidics merged: perspectives of highly sensitive diagnostic detection. Microchim Acta 176(3–4):251–269

    CAS  Google Scholar 

  8. Wang F, Burns M (2010) Droplet-based microsystem for multi-step bioreactions. Biomed Microdevices 12(3):533–541

    Article  CAS  Google Scholar 

  9. Theberge AB, Courtois F, Schaerli Y, Fischlechner M, Abell C, Hollfelder FS, Huck WT (2010) Microdroplets in microfluidics: an evolving platform for discoveries in chemistry and biology. Angew Chem Int Ed 49:5846–5868

    CAS  Google Scholar 

  10. Song H, Tice JD, Ismagilov RF (2003) A microfluidic system for controlling reaction networks in time. Angew Chem Int Ed 42(7):768–772

    Article  CAS  Google Scholar 

  11. Song H, Chen DL, Ismagilov RF (2006) Reactions in droplets in microfluidic channels. Angew Chem Int Ed 45(44):7336–7356

    Article  CAS  Google Scholar 

  12. Sung-Kwon C, Hyejin M, Chang-Jin K (2003) Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits. J Microelectromech Syst 12(1):70–80

    Article  Google Scholar 

  13. Ahmed R, Jones TB (2006) Dispensing picoliter droplets on substrates using dielectrophoresis. J Electrost 64(7–9):543–549

    Article  Google Scholar 

  14. Lehmann U, Vandevyver C, Parashar VK, Gijs MAM (2006) Droplet-based DNA purification in a magnetic lab-on-a-chip. Angew Chem Int Ed 45(19):3062–3067

    Article  CAS  Google Scholar 

  15. Guttenberg Z, Muller H, Habermuller H, Geisbauer A, Pipper J, Felbel J, Kielpinski M, Scriba J, Wixforth A (2005) Planar chip device for PCR and hybridization with surface acoustic wave pump. Lab Chip 5(3):308–317

    Article  CAS  Google Scholar 

  16. Wang F, Burns M (2009) Performance of nanoliter-sized droplet-based microfluidic PCR. Biomed Microdevices 11(5):1071–1080

    Article  CAS  Google Scholar 

  17. Anna SL, Bontoux N, Stone HA (2003) Formation of dispersions using “flow focusing” in microchannels. Appl Phys Lett 82(3):364–366

    Article  CAS  Google Scholar 

  18. Roman OG (2005) Chaotic mixing in thermocapillary-driven microdroplets. Phys Fluids 17(3):033601

    Article  Google Scholar 

  19. Gunther A, Jhunjhunwala M, Thalmann M, Schmidt MA, Jensen KF (2005) Micromixing of miscible liquids in segmented gasliquid flow. Langmuir 21(4):1547–1555

    Article  Google Scholar 

  20. Duda JL, Vrentas JS (1971) Steady flow in the region of closed streamlines in a cylindrical cavity. J Fluid Mech 45(02):247–260. doi:10.1017/S002211207100003X

    Article  Google Scholar 

  21. Handique K, Burns MA (2001) Mathematical modeling of drop mixing in a slit-type microchannel. J Micromech Microeng 11:548–554

    Article  CAS  Google Scholar 

  22. Casadevall i Solvas X, deMello A (2012) Droplet microfluidics: recent developments and future applications. Chem Commun 47(7):1936–1942

    Article  Google Scholar 

  23. Guo MT, Rotem A, Heyman JA, Weitz DA (2012) Droplet microfluidics for high-throughput biological assays. Lab Chip 12(12):2146–2155

    Article  CAS  Google Scholar 

  24. Konry T, Dominguez-Villar M, Baecher-Allan C, Hafler DA, Yarmush ML (2011) Droplet-based microfluidic platforms for single T cell secretion analysis of IL-10 cytokine. Biosens Bioelectron 26(5):2707–2710

    Article  CAS  Google Scholar 

  25. Ogunrin OA (2009) Tetanus—a review of current concepts in management. Benin J Postgrad Med 11(46–61)

    Google Scholar 

  26. Perry AL, Hayes AJ, Cox HA, Alcock F, Parker AR (2009) Comparison of five commercial anti-tetanus toxoid immunoglobulin G enzyme-linked immunosorbent assays. Clin Vaccine Immunol 16(12):1837–1839

    Article  CAS  Google Scholar 

  27. Chin CD, Linder V, Sia SK (2012) Commercialization of microfluidic point-of-care diagnostic devices. Lab Chip 12(12):2118–2134

    Article  CAS  Google Scholar 

  28. Zhu H, Yaglidere O, Su T-W, Tseng D, Ozcan A (2011) Cost-effective and compact wide-field fluorescent imaging on a cell-phone. Lab Chip 11(2):315–322

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the ECOR postdoctoral award to AG and Shriners Grant #85120-BOS. We are also thankful to Dr. Jon F. Edd for the help in design of the array.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tania Konry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Golberg, A., Yarmush, M.L. & Konry, T. Picoliter droplet microfluidic immunosorbent platform for point-of-care diagnostics of tetanus. Microchim Acta 180, 855–860 (2013). https://doi.org/10.1007/s00604-013-0998-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-013-0998-3

Keywords

Navigation