Skip to main content
Log in

A study on the direct electrochemistry and electrocatalysis of microperoxidase-11 immobilized on a porous network-like gold film: Sensing of hydrogen peroxide

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We have prepared porous and network-like nanofilms of gold by galvanic replacement of a layer of copper particles acting as a template. The films were first characterized by scanning electron microscopy and X-ray diffraction, and then modified with cysteamine so to enable the covalent immobilization of the enzyme microperoxidase-11. The immobilized enzyme undergoes direct electron transfer to the underlying electrodes, and the electrode displays high electrocatalytic activity towards the reduction of oxygen and hydrogen peroxide, respectively, owing to the largely enhanced electroactive surface of the porous gold film. The detection limit of H2O2 is 0.4 μM (3 S/N).

In this work, porous network-like Au films were prepared by galvanic replacement using Cu film as a sacrificial template. The cysteamine modified Au film was used to immobilize microperoxidase-11, which showed good stability and excellent electrochemical performance towards the reduction of O2 and H2O2, respectively

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tsou CL (1951) Cytochrome c modified by digestion with proteolytic enzymes. 1. Digestion. Biochem J 49:362

    CAS  Google Scholar 

  2. Harbury HA, Loach PA (1960) Oxidation-linked proton functions in heme octa- and undecapeptides from mammalian cytochrome c. J Biol Chem 235:3640

    CAS  Google Scholar 

  3. Yarman A, Nagel T, Gajovic-Eichelmann N, Fischer A, Wollenberger U, Scheller FW (2011) Bioelectrocatalysis by microperoxidase-11 in a multilayer architecture of chitosan embedded gold nanoparticles. Electroanalysis 23:611

    CAS  Google Scholar 

  4. Zhou Y, Liu S, Jiang H-J, Yang H, Chen H-Y (2010) Direct electrochemistry and bioelectrocatalysis of microperoxidase-11 immobilized on chitosan-graphene nanocomposite. Electroanalysis 22:1323

    Article  CAS  Google Scholar 

  5. Astuti Y, Topoglidis E, Durrant JR (2011) Use of microperoxidase-11 to functionalize tin dioxide electrodes for the optical and electrochemical sensing of hydrogen peroxide. Anal Chim Acta 686:126

    Article  CAS  Google Scholar 

  6. Chen S, Yuan R, Chai Y, Hu F (2012) Electrochemical sensing of hydrogen peroxide using metal nanoparticles: a review. Microchim Acta 180:15

    Article  Google Scholar 

  7. Abdelwahab AA, Koh WCA, Noh H-B, Shim Y-B (2010) A selective nitric oxide nanocomposite biosensor based on direct electron transfer of microperoxidase: Removal of interferences by co-immobilized enzymes. Biosens Bioelectron 26:1080

    Article  CAS  Google Scholar 

  8. Wang M, Zhao F, Liu Y, Dong S (2005) Direct electrochemistry of microperoxidase at Pt microelectrodes modified with carbon nanotubes. Biosens Bioelectron 21:159

    Article  CAS  Google Scholar 

  9. Willner I, Yan YM, Willner B, Tel-Vered R (2009) Integrated enzyme-based biofuel cells–A review. Fuel Cells 9:7

    Article  CAS  Google Scholar 

  10. Mazzei F, Favero G, Frasconi M, Tata A, Pepi F (2009) Electron-transfer kinetics of microperoxidase-11 covalently immobilised onto the surface of multi-walled carbon nanotubes by reactive landing of mass-selected ions. Chem-Eur J 15:7359

    Article  CAS  Google Scholar 

  11. Cheung KC, Wong WL, Ma DL, Lai TS, Wong KY (2007) Transition metal complexes as electrocatalysts—Development and applications in electro-oxidation reactions. Coord Chem Rev 251:2367

    Article  CAS  Google Scholar 

  12. Wu Y, Hu S (2007) Biosensors based on direct electron transfer in redox proteins. Microchim Acta 159:1

    Article  CAS  Google Scholar 

  13. Pingaron JM, Yáñez-Sedeño P, González-Cortés A (2008) Gold nanoparticle-based electrochemical biosensors. Electrochim Acta 53:5848

    Article  Google Scholar 

  14. Zeng S, Yong K-T, Roy I, Dinh X-Q, Yu X, Luan F (2011) A review on functionalized gold nanoparticles for biosensing applications. Plasmonics 6:491

    Article  CAS  Google Scholar 

  15. Chen Y, Kung S-C, Taggart DK, Halpern AR, Penner RM, Corn RM (2010) Fabricating nanoscale dna patterns with gold nanowires. Anal Chem 82:3365

    Article  CAS  Google Scholar 

  16. Grzelczak M, Perez-Juste J, Mulvaney P, Liz-Marzan LM (2008) Shape control in gold nanoparticle synthesis. Chem Soc Rev 37:1783

    Article  CAS  Google Scholar 

  17. Alexandridis P (2011) Gold nanoparticle synthesis, morphology control, and stabilization facilitated by functional polymers. Chem Eng Technol 34:15

    Article  CAS  Google Scholar 

  18. Kuo S-W, Yang H-Y, Wang C-F, Jeong K-U (2012) Nanoporous gold film prepared by the epoxidation of poly(styrene-b-butadiene) diblock copolymer templated micelles. Macromol Chem Phys 213:344

    Article  CAS  Google Scholar 

  19. Chen Z, Sun D, Zhou Y, Zhao J, Lu T, Huang X, Cai C, Shen J (2011) Nano polyurethane-assisted ultrasensitive biodetection of H2O2 over immobilized microperoxidase-11. Biosens Bioelectron 29:53

    Article  CAS  Google Scholar 

  20. Song Y-Y, Gao Z-D, Kelly JJ, Xia X-H (2005) Galvanic deposition of nanostructured noble-metal films on silicon. Electrochem Solid-State Lett 8:C148

    Article  CAS  Google Scholar 

  21. Song YY, Jia WZ, Li Y, Xia XH, Wang QJ, Zhao JW, Yan YD (2007) Synthesis and patterning of prussian blue nanostructures on silicon wafer via galvanic displacement reaction. Adv Funct Mater 17:2808

    Article  CAS  Google Scholar 

  22. Zhu X, Yuri I, Gan X, Suzuki I, Li G (2007) Electrochemical study of the effect of nano-zinc oxide on microperoxidase and its application to more sensitive hydrogen peroxide biosensor preparation. Biosens Bioelectron 22:1600

    Article  CAS  Google Scholar 

  23. Zhang X, Wang G, Liu X, Wu H, Fang B (2008) Copper dendrites: synthesis, mechanism discussion, and application in determination of l-tyrosine. Cryst Growth Des 8:1430

    Article  CAS  Google Scholar 

  24. Huang C-J, Chiu P-H, Wang Y-H, Yang C-F (2006) Synthesis of the gold nanodumbbells by electrochemical method. J Colloid Interface Sci 303:430

    Article  CAS  Google Scholar 

  25. Li Y, Song Y-Y, Yang C, Xia X-H (2007) Hydrogen bubble dynamic template synthesis of porous gold for nonenzymatic electrochemical detection of glucose. Electrochem Commun 9:981

    Article  CAS  Google Scholar 

  26. Feng J-J, Li A-Q, Lei Z, Wang A-J (2012) Low-potential synthesis of clean au nanodendrites and their high performance toward ethanol oxidation. ACS Appl Mater Interfaces 4:2570

    Article  CAS  Google Scholar 

  27. Gao W, Xia X-H, Xu J-J, Chen H-Y (2007) Three-dimensionally ordered macroporous gold structure as an efficient matrix for solid-state electrochemiluminescence of Ru(bpy)3 2+/TPA system with high sensitivity. J Phys Chem C 111:12213

    Article  CAS  Google Scholar 

  28. Zhang L, Zhang J, Zhang C (2009) Electrochemical synthesis of polyaniline nano-network on alpha-alanine functionalized glassy carbon electrode and its application for the direct electrochemistry of horse heart cytochrome c. Biosens Bioelectron 24:2085

    Article  CAS  Google Scholar 

  29. Xie Y, Hu N, Liu H (2009) Bioelectrocatalytic reactivity of myoglobin in layer-by-layer films assembled with triblock copolymer Pluronic F127. J Electroanal Chem 630:63

    Article  CAS  Google Scholar 

  30. Zhao Y-D, Bi Y-H, Zhang W-D, Luo Q-M (2005) The interface behavior of hemoglobin at carbon nanotube and the detection for H2O2. Talanta 65:489

    Article  CAS  Google Scholar 

  31. Jin B, Wang G-X, Millo D, Hildebrandt P, Xia X-H (2012) Electric-field control of the pH-dependent redox process of cytochrome c immobilized on a gold electrode. J Phys Chem C 116:13038

    Article  CAS  Google Scholar 

  32. Kafi AKM, Wu G, Chen A (2008) A novel hydrogen peroxide biosensor based on the immobilization of horseradish peroxidase onto Au-modified titanium dioxide nanotube arrays. Biosens Bioelectron 24:566

    Article  CAS  Google Scholar 

  33. Wang CH, Yang C, Song YY, Gao W, Xia XH (2005) Adsorption and direct electron transfer from hemoglobin into a three-dimensionally ordered macroporous gold film. Adv Funct Mater 15:1267

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Nation Natural Science foundation of China (20805011, 20905021, 20905055, 51108424, 21175218 and 21275130), the Foundation of the Ministry of Education of China for Returned Scholars (A.J. Wang and J.J. Feng), and the opening funding of State Key Laboratory of Analytical Chemistry for Life Science of Nanjing University (SKLACLS1107 for J.J. Feng).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiu-Ju Feng.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 1718 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, QL., Wang, AJ., Meng, ZY. et al. A study on the direct electrochemistry and electrocatalysis of microperoxidase-11 immobilized on a porous network-like gold film: Sensing of hydrogen peroxide. Microchim Acta 180, 581–587 (2013). https://doi.org/10.1007/s00604-013-0960-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-013-0960-4

Keywords

Navigation