Skip to main content
Log in

Determination of trace total inorganic arsenic by hydride generation atomic fluorescence spectrometry after solid phase extraction-preconcentration on aluminium hydroxide gel

  • Short Communication
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We describe a simple, effective, inexpensive and rapid method for the determination of trace amounts of total inorganic arsenic in water samples by means of a modified solid phase preconcentration procedure using an aluminium hydroxide gel sorbent and hydride generation atomic fluorescence spectrometry (HGAFS). This method avoids the traditional extraction procedures that are time- and solvent-consuming. The effects of quantity of adsorbent, solution pH, adsorption time and potentially interfering ions were studied. Under the optimal conditions, the detection limit is 3 ng•L−1, and the enrichment factor is 167. The calibration plot is linear in the range from 0.05 to 10 μg•L−1, with a correlation coefficient of 0.9992. The relative standard deviation (RSD) was less than 6.1 % (n = 5) and recoveries in spiked environmental water were >100 %. The method was successfully applied to the determination of total inorganic arsenic in natural water samples.

The above figure showed effect of adsorption time on recoveries of total inorganic arsenic. The adsorption rate of total inorganic arsenic on is very fast and it takes only several minutes to reach adsorption balance. After reaching adsorption balance, recoveries of total inorganic arsenic is up to 95 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Luo X, Wang C, Luo S, Dong R, Tu X, Zeng G (2012) Adsorption of As(III) and As(V) from water using magnetite Fe3O4-reduced graphite oxide-MnO2 nanocomposites. Chem Eng J 187:45–52

    Article  CAS  Google Scholar 

  2. Baskan MB, Pala A (2011) Removal of arsenic from drinking water using modified natural zeolite. Desalination 281:396–403

    Article  Google Scholar 

  3. Zhang J, Zhang G, Zhao C, Quan X, Jia Q (2012) On-line preconcentration/separation of inorganic arsenic and antimony by poly(aryl ether ketone) containing pendant carboxyl groups prior to microwave plasma atomic spectrometry determinations. Microchem J 100:95–99

    Article  CAS  Google Scholar 

  4. Erdoğan H, Yalçınkaya Ö, Türker AR (2011) Determination of inorganic arsenic species by hydride generation atomic absorption spectrometry in water samples after preconcentration/separation on nano ZrO2/B2O3 by solid phase extraction. Desalination 280:391–396

    Article  Google Scholar 

  5. Pistón M, Silva J, Pérez-Zambra R, Dol I, Knochen M (2012) Automated method for the determination of total arsenic and selenium in natural and drinking water by HG-AAS. Environ Geochem Health 34:273–278

    Article  Google Scholar 

  6. Camacho LM, Gutierrez M, Alarcon-Herrera MT, de Villalba ML, Deng S (2011) Occurrence and treatment of arsenic in groundwater and soil in northern Mexico and southwestern USA. Chemosphere 83:211–225

    Article  CAS  Google Scholar 

  7. Bissen M, Frimmel FH (2003) Arsenic-a review. Part I. Occurrence, toxicity, speciation, mobility. Acta Hydrochim Hydrobiol 31:9–18

    Article  CAS  Google Scholar 

  8. Akter A, Ali MH (2011) Arsenic contamination in groundwater and its proposed remedial measures. Int J Environ Sci Tech 8:433–443

    CAS  Google Scholar 

  9. Vieira MA, Welz B, Curtius AJ (2002) Determination of arsenic in sediments, coal and fly ash slurries after ultrasonic treatment by hydride generation atomic absorption spectrometry and trapping in an iridium-treated graphite tube. Spectrochim Acta, B 57:2057–2067

    Article  Google Scholar 

  10. Gettar RT, Smichowski P, Garavaglia RN, Farías S, Batistoni DA (2005) Effect of nebulizer/spray chamber interfaces on simultaneous, axial view inductively coupled plasma optical emission spectrometry for the direct determination of As and Se species separated by ion exchange high-performance liquid chromatography. Spectrochim Acta, B 60:567–573

    Article  Google Scholar 

  11. Gil RA, Ferrúa N, Salonia JA, Olsina RA, Martinez LD (2007) On-line arsenic co-precipitation on ethyl vinyl acetate turning-packed mini-column followed by hydride generation-ICP OES determination. J Hazard Mater 143:431–436

    Article  CAS  Google Scholar 

  12. Song Y, Swain GM (2007) Total inorganic arsenic detection in real water samples using anodic stripping voltammetry and a gold-coated diamond thin-film electrode. Anal Chim Acta 593:7–12

    Article  CAS  Google Scholar 

  13. D’Ulivo A, Paolicchi I, Onor M, Zamboni R, Lampugnani L (2009) Flame -in-gas-shield miniature flame hydride atomizers for ultra trace element determination by chemical vapor generation atomic fluorescence spectrometry. Spectrochim Acta, B 64:48–55

    Article  Google Scholar 

  14. Karadjova IB, Lampugnani L, Onor M, D’Ulivo A, Tsalev DL (2005) Continuous flow hydride generation-atomic fluorescence spectrometric determination and speciation of arsenic in wine. Spectrochim Acta, B 60:816–823

    Article  Google Scholar 

  15. Zhang WB, Yang XA, Dong YP, Chu XF (2010) Application of alkaline mode electrochemical hydride generation for the detection of As and Sb using atomic fluorescence spectrometry. Spectrochim Acta, B 65:571–578

    Article  Google Scholar 

  16. Monasterio RP, Wuilloud RG (2010) Ionic liquid as ion-pairing reagent for liquid-liquid microextraction and preconcentration of arsenic species in natural waters followed by ETAAS. J Anal At Spectrom 25:1485–1490

    Article  CAS  Google Scholar 

  17. Ulusoy Hİ, Akçay M, Ulusoy S, Gürkan R (2011) Determination of ultra trace arsenic species in water samples by hydride generation atomic absorption spectrometry after cloud point extraction. Anal Chim Acta 703:137–144

    Article  CAS  Google Scholar 

  18. van Leeuwen HP, Town RM (2002) Stripping chronopotentiometry at scanned deposition potential(SSCP). Part 1. Fundamental features. J Electroanal Chem 536:129–140

    Article  Google Scholar 

  19. van Leeuwen HP, Town RM (2003) Electrochemical metal speciation analysis of chemically heterogeneous samples: the outstanding features of stripping chronopotentiometry at scanned deposition potential. Environ Sci Technol 37:3945–3952

    Article  Google Scholar 

  20. Ravelo-Pérez LM, Herrera AVH, Borges JH, Delgado MÁR (2010) Carbon nanotubes: solid-phase extraction. J Chromatogr A 1217:2618–2641

    Article  Google Scholar 

  21. Yang B, Gong Q, Zhao L, Sun H, Ren N, Qin J, Xu J, Yang H (2011) Preconcentration and determination of lead and cadmium in water samples with a MnO2 coated carbon nanotubes by using ETAAS. Desalination 278:65–69

    Article  CAS  Google Scholar 

  22. Han D, Row KH (2012) Trends in liquid-phase microextraction, and its application to environmental and biological samples. Microchim Acta 176:1–22

    Article  CAS  Google Scholar 

  23. Ojeda CB, Rojas FS (2012) Separation and preconcentration by cloud point extraction procedures for determination of ions: recent trends and applications. Microchim Acta 177:1–21

    Article  CAS  Google Scholar 

  24. Jitmanee K, Oshima M, Motomizu S (2005) Speciation of arsenic(III) and arsenic(V) by inductively coupled plasma-atomic emission spectrometry coupled with preconcentration system. Talanta 66:529–533

    Article  CAS  Google Scholar 

  25. Liang P, Liu R (2007) Speciation analysis of inorganic arsenic in water samples by immobilized nanometer titanium dioxide separation and graphite furnace atomic absorption spectrometric determination. Anal Chim Acta 602:32–36

    Article  CAS  Google Scholar 

  26. Xiong CM, He M, Hu B (2008) On-line separation and preconcentration of inorganic arsenic and selenium species in natural water samples with CTAB-modified alkyl silica microcolumn and determination by inductively coupled plasmaoptical emission spectrometry. Talanta 76:772–779

    Article  CAS  Google Scholar 

  27. Zamboulis D, Misaelides P, Bakoyannakis D, Godelitsas A, Barbayannis N, Stalides G, Anousis I (1996) Perrhenate ion uptake by aluminium hydroxide gels. J Radioanal Nucl Chem 208:507–517

    Article  CAS  Google Scholar 

  28. Luján JC (2001) Aluminum hydroxide hydrogel to remove arsenic from water. Rev Panam Salud Publica 9:302–305

    Article  Google Scholar 

  29. Kawasaki N, Ogata F, Tominaga H (2010) Selective adsorption behavior of phosphate onto aluminum hydroxide gel. J Hazard Mater 181:574–579

    Article  CAS  Google Scholar 

  30. Bakoyannakis DN, Stdidis GA, Zamboulis D, Jannakoudakis DA (1993) Studies of alizarine adsorption from solution on to aluminium hydroxide gels. J Chem Tech Biotechnol 58:241–253

    Google Scholar 

  31. Beruto DT, Botter R, Converti A (2008) Aluminum hydroxide microstructural units in gelled media aged, or nonaged, with alcohol and water. J Colloid Interf Sci 322:158–167

    Article  CAS  Google Scholar 

  32. Manning BA, Fendorf SE, Bostick B, Suarez DL (2002) Arsenic(III) oxidation and arsenic(V) adsorption reactions on synthetic birnessit. Environ Sci Technol 36:976–981

    Article  CAS  Google Scholar 

  33. Tuzen M, Cıtak D, Mendil D, Soylak M (2009) Arsenic speciation in natural water samples by coprecipitation-hydride generation atomic absorption spectrometry combination. Talanta 78:52–56

    Article  CAS  Google Scholar 

  34. Ghimire KN, Inoue K, Yamaguchi H, Makino K, Miyajima T (2003) Adsorptive separation of arsenate and arsenite anions from aqueous medium by using orange waste. Water Res 30:4945–4953

    Article  Google Scholar 

  35. Zhao XL, Wang JM, Wu FC, Wang T, Cai YQ, Shi YL, Jiang GB (2010) Removal of fluoride from aqueous media by Fe3O4@Al(OH)3 magnetic nanoparticles. J Hazard Mater 173:102–109

    Article  CAS  Google Scholar 

  36. Rosenqvist J, Persson P, Sjőberg S (2002) Protonation and charging of nanosized gibbsite (α-Al(OH)3) particles in aqueous suspension. Langmuir 18:4598–4604

    Article  CAS  Google Scholar 

  37. Shemirani F, Baghdadi M, Ramezani M (2005) Preconcentration and determination of ultra trace amounts of arsenic(III) and arsenic(V) in tap water and total arsenic in biological samples by cloud point extraction and electrothermal atomic absorption spectrometry. Talanta 65:882–887

    Article  CAS  Google Scholar 

  38. Zhang YJ, Wang WD, Li L, Huang YM, Cao J (2010) Egg shell membrane-based solid-phase extraction combined with hydride generation atomic fluorescence spectrometry for trace arsenic(V) in environmental water samples. Talanta 80:1907–1912

    Article  CAS  Google Scholar 

  39. Uluozlu OD, Tuzen M, Mendil D, Soylak M (2010) Determination of As(III) and As(V) species in some natural water and food samples by solid-phase extraction on Streptococcus pyogenes immobilized on Sepabeads SP 70 and hydride generation atomic absorption spectrometry. Food Chem Toxicol 48:1393–1398

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Natural Science Foundation of China (50978132, 51178213, 51238002, 51272099, 51008149), Program for New Century Excellent Talents in University (NCET-11-1004), Cultivating Program for Young Scientists of Jiangxi Province of China (20112BCB23016) Natural Science Foundation of Jiangxi Province (20122BAB213014, 20114BAB203018) and Department of Education Fund of Jiangxi Province (Grant GJJ11508).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xubiao Luo or Shenglian Luo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deng, F., Dong, R., Yu, K. et al. Determination of trace total inorganic arsenic by hydride generation atomic fluorescence spectrometry after solid phase extraction-preconcentration on aluminium hydroxide gel. Microchim Acta 180, 509–515 (2013). https://doi.org/10.1007/s00604-013-0941-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-013-0941-7

Keywords

Navigation