Skip to main content
Log in

Comparison of methods for the processing of voltammetric electronic tongues data

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We are making a numerical comparison of various preprocessing strategies for dealing with data from voltammetric electronic tongues in order to reduce the high dimensionality of the response matrices. Different modelling tools are presented and briefly described. We then compare combinations of four preprocessing strategies (principal component analysis, fast Fourier transform, discrete wavelet transform, voltammogram-windowed slicing integral) with four modelling alternatives (principal component regression, partial least squares regression, multi-way partial least squares regression, artificial neural networks) by employing data from a voltammetric bioelectronic tongue, an array formed by enzyme-modified biosensors and applied to the discrimination and quantification of phenolic compounds.

We are making a numerical comparison of various preprocessing strategies for dealing with data from voltammetric electronic tongues in order to reduce the high dimensionality of the response matrices

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Scampicchio M, Ballabio D, Arecchi A, Cosio SM, Mannino S (2008) Amperometric electronic tongue for food analysis. Microchim Acta 163:11–21

    Article  CAS  Google Scholar 

  2. Ciosek P, Wroblewski W (2007) Sensor arrays for liquid sensing - electronic tongue systems. Analyst 132:963–978

    Article  CAS  Google Scholar 

  3. Vlasov Y, Legin A (1998) Non-selective chemical sensors in analytical chemistry: from “electronic nose” to “electronic tongue”. Fresenius J Anal Chem 361:255–260

    Article  CAS  Google Scholar 

  4. Vlasov Y, Legin A, Rudnitskaya A, Di Natale C, D’Amico A (2005) Nonspecific sensor arrays (“electronic tongue”) for chemical analysis of liquids (IUPAC Technical Report). Pure Appl Chem 77:1965–1983

    Article  CAS  Google Scholar 

  5. del Valle M (2010) Electronic Tongues Employing Electrochemical Sensors. Electroanal 22:1539–1555

    Google Scholar 

  6. Hossein-Babaei F, Ghafarinia V (2010) Compensation for the drift-like terms caused by environmental fluctuations in the responses of chemoresistive gas sensors. Sensor Actuat B-Chem 143:641–648

    Article  Google Scholar 

  7. Mimendia A, Gutiérrez JM, Opalski LJ, Ciosek P, Wróblewski W, del Valle M (2010) SIA system employing the transient response from a potentiometric sensor array—Correction of a saline matrix effect. Talanta 82:931–938

    Article  CAS  Google Scholar 

  8. Zeravik J, Hlavacek A, Lacina K, Skladal P (2009) State of the Art in the Field of Electronic and Bioelectronic Tongues - Towards the Analysis of Wines. Electroanal 21:2509–2520

    Article  CAS  Google Scholar 

  9. Riul A Jr, Dantas CAR, Miyazaki CM, Oliveira ON Jr (2010) Recent advances in electronic tongues. Analyst 135:2481–2495

    Article  CAS  Google Scholar 

  10. Martens H, Naes T (1991) Multivariate calibration. Wiley, Chichester

    Google Scholar 

  11. Bro R (2006) Review on multiway analysis in chemistry - 2000-2005. Crit Rev Anal Chem 36:279–293

    Article  CAS  Google Scholar 

  12. del Valle M (2008) Electrochemical micro(bio)sensor arrays. Microchim Acta 163:1–2

    Article  Google Scholar 

  13. Gutiérrez JM, Haddi Z, Amari A, Bouchikhi B, Mimendia A, Cetó X, del Valle M (2013) Hybrid Electronic Tongue based on Multisensor Data Fusion for Discrimination of Beers. Sensors Actuators B Chem 177:989–996

    Google Scholar 

  14. Holmin S, Spångeus P, Krantz-Rülcker C, Winquist F (2001) Compression of electronic tongue data based on voltammetry — a comparative study. Sensor Actuat B-Chem 76:455–464

    Article  Google Scholar 

  15. Palit M, Tudu B, Bhattacharyya N, Dutta A, Dutta PK, Jana A, Bandyopadhyay R, Chatterjee A (2010) Comparison of multivariate preprocessing techniques as applied to electronic tongue based pattern classification for black tea. Anal Chim Acta 675:8–15

    Article  CAS  Google Scholar 

  16. Scott SM, James D, Ali Z (2006) Data analysis for electronic nose systems. Microchim Acta 156:183–207

    Article  CAS  Google Scholar 

  17. Richards E, Bessant C, Saini S (2002) Multivariate Data Analysis in Electroanalytical Chemistry. Electroanal 14:1533–1542

    Article  CAS  Google Scholar 

  18. Palacios-Santander JM, Cubillana-Aguilera LM, Cocchi M, Ulrici A, Naranjo-Rodríguez I, Seeber R, Hidalgo-Hidalgo de Cisneros JL (2008) Multicomponent analysis in the wavelet domain of highly overlapped electrochemical signals: Resolution of quaternary mixtures of chlorophenols using a peg-modified Sonogel–Carbon electrode. Chemometr Intell Lab 91:110–120

    Article  CAS  Google Scholar 

  19. Cetó X, Gutiérrez JM, Gutiérrez M, Céspedes F, Capdevila J, Mínguez S, Jiménez-Jorquera C, del Valle M (2012) Determination of total polyphenol index in wines employing a voltammetric electronic tongue. Anal Chim Acta 732:172–179

    Article  Google Scholar 

  20. Alsberg BK, Woodward AM, Winson MK, Rowland JJ, Kell DB (1998) Variable selection in wavelet regression models. Anal Chim Acta 368:29–44

    Article  CAS  Google Scholar 

  21. Ebrahimi D, Chow E, Gooding JJ, Hibbert DB (2008) Multi-analyte sensing: a chemometrics approach to understanding the merits of electrode arrays versus single electrodes. Analyst 133:1090–1096

    Article  CAS  Google Scholar 

  22. Bro R (1998) Multi-way analysis in the food industry. Models, algorithms and applications. University of Amsterdam,

  23. Cartas R, Mimendia A, Legin A, del Valle M (2011) Multiway Processing of Data Generated with a Potentiometric Electronic Tongue in a SIA System. Electroanal 23:953–961

    Article  CAS  Google Scholar 

  24. Boger Z (2003) Selection of quasi-optimal inputs in chemometrics modeling by artificial neural network analysis. Anal Chim Acta 490:31–40

    Article  CAS  Google Scholar 

  25. Cetó X, Céspedes F, Pividori MI, Gutiérrez JM, del Valle M (2012) Resolution of phenolic antioxidant mixtures employing a voltammetric bio-electronic tongue. Analyst 137:349–356

    Article  Google Scholar 

  26. de Carvalho RM, Mello C, Kubota LT (2000) Simultaneous determination of phenol isomers in binary mixtures by differential pulse voltammetry using carbon fibre electrode and neural network with pruning as a multivariate calibration tool. Anal Chim Acta 420:109–121

    Article  Google Scholar 

  27. Gutiérrez-Osuna R, Nagle HT (1999) A method for evaluating data-preprocessing techniques for odour classification with an array of gas sensors. IEEE T Syst Man Cy B 29:626–632

    Article  Google Scholar 

  28. Moreno-Barón L, Cartas R, Merkoçi A, Alegret S, del Valle M, Leija L, Hernandez PR, Muñoz R (2006) Application of the wavelet transform coupled with artificial neural networks for quantification purposes in a voltammetric electronic tongue. Sensor Actuat B-Chem 113:487–499

    Article  Google Scholar 

  29. Cetó X, Céspedes F, del Valle M (2012) BioElectronic Tongue for the quantification of total polyphenol content in wine. Talanta 99:544–551

    Article  Google Scholar 

  30. Harman HH (1976) Modern Factor Analysis, 3rd edn. University of Chicago Press, Chicago

    Google Scholar 

  31. Vesin J-M, Grüter R (1999) Model selection using a simplex reproduction genetic algorithm. Signal Pocess 78:321–327

    Article  Google Scholar 

  32. Xiaobo Z, Jiewen Z, Povey MJW, Holmes M, Hanpin M (2010) Variables selection methods in near-infrared spectroscopy. Anal Chim Acta 667:14–32

    Article  Google Scholar 

  33. Smits JRM, Melssen WJ, Buydens LMC, Kateman G (1994) Using artificial neural networks for solving chemical problems: Part I. Multi-layer feed-forward networks. Chemometr Intell Lab 22:165–189

    Article  CAS  Google Scholar 

  34. Jolliffe IT (2002) Principal Component Analysis. Springer, New York

    Google Scholar 

  35. Rader C, Brenner N (1976) A new principle for fast Fourier transformation. IEEE T Acoust Speech 24:264–266

    Article  Google Scholar 

  36. Griffiths PR, De Haseth JA (1986) Fourier transform infrared spectrometry, vol v. 83, 2nd edn. Wiley, Hoboken

    Google Scholar 

  37. Tchistiakov V, Ruckebusch C, Duponchel L, Huvenne J-P, Legrand P (2000) Neural network modelling for very small spectral data sets: reduction of the spectra and hierarchical approach. Chemometr Intell Lab 54:93–106

    Article  CAS  Google Scholar 

  38. Mallat SG (1989) A theory for multiresolution signal decomposition - the wavelet representation. IEEE Trans Pattern Anal Mach Intell 11:674–693

    Article  Google Scholar 

  39. del Valle M, Muñoz R, Gutierrez JM (2012) Wavelets: Classification, Theory and Applications. Nova Science, New York

  40. Grossmann A, Morlet J (1984) Decomposition of hardy functions into square integrable wavelets of constant shape. SIAM J Math Anal 15:723–736

    Article  Google Scholar 

  41. Lvova L, Kim SS, Legin A, Vlasov Y, Yang JS, Cha GS, Nam H (2002) All-solid-state electronic tongue and its application for beverage analysis. Anal Chim Acta 468:303–314

    Article  CAS  Google Scholar 

  42. Esbensen KH (2002) Multivariate Data Analysis - in practice. CAMO Sosftware, Oslo

    Google Scholar 

  43. Abdi H (2010) Partial least squares regression and projection on latent structure regression (PLS Regression). WIREs Comput Stat 2:97–106

    Article  Google Scholar 

  44. Faber NM, Ferre J, Boque R, Kalivas JH (2002) Second-order bilinear calibration: the effects of vectorising the data matrices of the calibration set. Chemometr Intell Lab 63:107–116

    Article  CAS  Google Scholar 

  45. Smilde AK, Bro R, Geladi P (2004) Multi-way analysis: applications in the chemical sciences. John Wiley & Sons Ltd., Chichester

    Book  Google Scholar 

  46. Zupan J, Gasteiger J (1991) Neural networks: A new method for solving chemical problems or just a passing phase? Anal Chim Acta 248:1–30

    Article  CAS  Google Scholar 

  47. Despagne F, Luc Massart D (1998) Neural networks in multivariate calibration. Analyst 123:157R–178R

    Article  CAS  Google Scholar 

  48. Hush DR, Horne BG (1993) Progress in supervised neural networks. IEEE Signal Process Mag 10:8–39

    Article  Google Scholar 

  49. del Valle M, Cetó X, Gutiérrez M (2013) Chapter 6 BioElectronic Tongues: When the Sensor Array Incorporates Biosensors. In: Lvova L, Kirsanov D, Di Natale C, Legin A (eds) Multisensor systems for chemical analysis: materials and sensors. Pan Stanford Publishing, Salem MA

  50. Tønning E, Sapelnikova S, Christensen J, Carlsson C, Winther-Nielsen M, Dock E, Solna R, Skladal P, Nørgaard L, Ruzgas T, Emnéus J (2005) Chemometric exploration of an amperometric biosensor array for fast determination of wastewater quality. Biosens Bioelec 21:608–617

    Article  Google Scholar 

  51. Moreno-Barón L, Cartas R, Merkoçi A, Alegret S, Gutiérrez JM, Leija L, Hernández PR, Muñoz R, del Valle M (2005) Data compression for a voltammetric electronic tongue modelled with artificial neural networks. Anal Lett 38:2189–2206

    Article  Google Scholar 

  52. Apetrei C, Apetrei IM, Saja JAD, Rodriguez-Mendez ML (2011) Carbon Paste Electrodes Made from Different Carbonaceous Materials: Application in the Study of Antioxidants. Sensors 11:1328–1344

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support for this work was provided by Spanish Ministry of Science and Innovation, MCINN (Madrid) trough projects CTQ2010-17099 and by program ICREA Academia. X. Cetó thanks the support of Dept. dInnovació, Universitats i Empresa de la Generalitat de Catalunya for the predoctoral grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manel del Valle.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 23.7 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cetó, X., Céspedes, F. & del Valle, M. Comparison of methods for the processing of voltammetric electronic tongues data. Microchim Acta 180, 319–330 (2013). https://doi.org/10.1007/s00604-012-0938-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-012-0938-7

Keywords

Navigation