Advertisement

Microchimica Acta

, Volume 180, Issue 3–4, pp 287–294 | Cite as

Simple optical determination of silver ion in aqueous solutions using benzo crown-ether modified gold nanoparticles

  • Nahid Haghnazari
  • Abdolhamid AlizadehEmail author
  • Changiz KaramiEmail author
  • Zohreh Hamidi
Original Paper

Abstract

We describe a method for the modification of gold nanoparticles (Au-NPs) with benzo-15-crown-5 that led to the development of a colorimetric assay for Ag(I) ion. The brown color of a solution of the modified Au-NPs turns to purple on addition of Ag(I) ion. The ratio of the UV–vis absorption at 600 nm and 525 nm is proportional to the concentration of Ag(I) ions in the range from 20 to 950 nM, and the detection limit is 12.5 nM. Other metal ions do not interfere if present in up to millimolar concentrations. The method enables a rapid determination of Ag(I) in lake and drinking water and is amenable to bare-eye readout.

Figure

The selective colorimetric detection of Ag+ ion using gold nanoparticles modified with benzo crown ether is reported with a color detection limit ~50 nM by naked-eye. The feasibility and simplicity of this cost-effective sensing system demonstrates great potential for the detection of sliver ion in real samples.

Keywords

Nano sensors Gold nanoparticles Benzo-15-crown-5 Colorimetric sensing Heavy metals Silver sensor 

Notes

Acknowledgments

We are thankful to the Islamic Azad university branch of Sanandaj for the support this work.

Supplementary material

604_2012_928_MOESM1_ESM.pdf (745 kb)
ESM 1 (PDF 744 kb)

References

  1. 1.
    Rosi NL, Mirkin CA (2005) Nanostructures in biodiagnostics. Chem Rev 105(4):1547–1562. doi: 10.1021/cr030067f CrossRefGoogle Scholar
  2. 2.
    Stewart ME, Anderton CR, Thompson LB, Maria J, Gray SK, Rogers JA, Nuzzo RG (2008) Nanostructured plasmonic sensors. Chem Rev 108(2):494–521. doi: 10.1021/cr068126n CrossRefGoogle Scholar
  3. 3.
    Ghadiali JE, Stevens MM (2008) Enzyme-responsive nanoparticle systems. Adv Mater 20(22):4359–4363. doi: 10.1002/adma.200703158 CrossRefGoogle Scholar
  4. 4.
    Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346CrossRefGoogle Scholar
  5. 5.
    Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105(4):1025–1102. doi: 10.1021/cr030063a CrossRefGoogle Scholar
  6. 6.
    Garcia MA, de la Venta J, Crespo P, Llopis J, Penadés S, Fernández A, Hernando A (2005) Surface plasmon resonance of capped Au nanoparticles. Phys Rev B 72(24):241403CrossRefGoogle Scholar
  7. 7.
    Obare SO, Hollowell RE, Murphy CJ (2002) Sensing strategy for lithium ion based on gold nanoparticles. Langmuir 18(26):10407–10410. doi: 10.1021/la0260335 CrossRefGoogle Scholar
  8. 8.
    Liu J, Lu Y (2004) Colorimetric biosensors based on DNAzyme-Assembled gold nanoparticles. J Fluoresc 14(4):343–354. doi: 10.1023/B:JOFL.0000031816.06134.d3 CrossRefGoogle Scholar
  9. 9.
    Chansuvarn W, Imyim A (2012) Visual and colorimetric detection of mercury (II) ion using gold nanoparticles stabilized with a dithia-diaza ligand. Microchim Acta 176(1):57–64CrossRefGoogle Scholar
  10. 10.
    Qi L, Shang Y, Wu F (2012) Colorimetric detection of lead (II) based on silver nanoparticles capped with iminodiacetic acid. Microchim Acta 178(1–2):221–227Google Scholar
  11. 11.
    Xu H, Liu B, Chen Y (2012) A colorimetric method for the determination of lead (II) ions using gold nanoparticles and a guanine-rich oligonucleotide. Microchim Acta 177(1–2):89–94Google Scholar
  12. 12.
    Otsuka H, Akiyama Y, Nagasaki Y, Kataoka K (2001) Quantitative and reversible lectin-induced association of gold nanoparticles modified with α-Lactosyl-ω-mercapto-poly(ethylene glycol). J Am Chem Soc 123(34):8226–8230. doi: 10.1021/ja010437m CrossRefGoogle Scholar
  13. 13.
    Ratte HT (1999) Bioaccumulation and toxicity of silver compounds: a review. Environ Toxicol Chem 18(1):89–108CrossRefGoogle Scholar
  14. 14.
    EPA Drinking Water Criteria Document for Silver (1989) In: EPA CASRN 7440-7422- 444. Environmental Protection Agency, Washington, DCGoogle Scholar
  15. 15.
    National Primary Drinking Water Regulations (1991) In: Final rule, Fed. Regist. 56:3526, vol 56. Environmental Protection Agency, Washington DCGoogle Scholar
  16. 16.
    Oehme I, Wolfbeis OS (1997) Optical sensors for determination of heavy metal ions. Microchim Acta 126(3):177–192CrossRefGoogle Scholar
  17. 17.
    EPA Method 200.7, “Inductively Coupled Plasma Atomic Emission SpectrometricMethod for Trace Element Analysis of Water and Wastes,” and EPA Method 200.8, “Determination of Trace Elements in Waters and Wastes by Inductively Coupled Plasma-Mass Spectrometry,” from “Methods for Determination of Metals in Environmental SamplessSupplement I”, EPA-600/R-94-111 (1994) Environmental Protection Agency, Washington, DCGoogle Scholar
  18. 18.
    Henneth H (1990) Official methods of analysis of the Association of Official Analytical Chemists. In: Chemists AoOA (ed). Arlington, Virginia, p 324Google Scholar
  19. 19.
    Brust M, Bethell D, Kiely CJ, Schiffrin DJ (1998) Self-assembled gold nanoparticle thin films with nonmetallic optical and electronic properties. Langmuir 14(19):5425–5429. doi: 10.1021/la980557g CrossRefGoogle Scholar
  20. 20.
    Faraday M (1857) The Bakerian lecture: experimental relations of gold (and other metals) to light. Phil Trans 147:145–181CrossRefGoogle Scholar
  21. 21.
    Hostetler MJ, Templeton AC, Murray RW (1999) Dynamics of place-exchange reactions on monolayer-protected gold cluster molecules. Langmuir 15(11):3782–3789. doi: 10.1021/la981598f CrossRefGoogle Scholar
  22. 22.
    Srivastava S, Frankamp BL, Rotello VM (2005) Controlled plasmon resonance of gold nanoparticles self-assembled with PAMAM dendrimers. Chem Mater 17(3):487–490. doi: 10.1021/cm048579d CrossRefGoogle Scholar
  23. 23.
    Lin SY, Liu SW, Lin CM, Chen C (2002) Recognition of potassium ion in water by 15-crown-5 functionalized gold nanoparticles. Anal Chem 74(2):330–335CrossRefGoogle Scholar
  24. 24.
    Hostetler MJ, Wingate JE, Zhong C-J, Harris JE, Vachet RW, Clark MR, Londono JD, Green SJ, Stokes JJ, Wignall GD, Glish GL, Porter MD, Evans ND, Murray RW (1998) Alkanethiolate gold cluster molecules with core diameters from 1.5 to 5.2 nm: core and monolayer properties as a function of core size. Langmuir 14(1):17–30. doi: 10.1021/la970588w CrossRefGoogle Scholar
  25. 25.
    Hostetler MJ, Green SJ, Stokes JJ, Murray RW (1996) Monolayers in three dimensions: synthesis and electrochemistry of ω-functionalized alkanethiolate-stabilized gold cluster compounds. J Am Chem Soc 118(17):4212–4213. doi: 10.1021/ja960198g CrossRefGoogle Scholar
  26. 26.
    Templeton AC, Wuelfing WP, Murray RW (1999) Monolayer-protected cluster molecules. Acc Chem Res 33(1):27–36. doi: 10.1021/ar9602664 CrossRefGoogle Scholar
  27. 27.
    Khodaei MM, Alizadeh A, Nazari E (2007) Tf2O as a rapid and efficient promoter for the dehydrative Friedel–Crafts acylation of aromatic compounds with carboxylic acids. Tetrahedron Lett 48(24):4199–4202. doi: 10.1016/j.tetlet.2007.04.066 CrossRefGoogle Scholar
  28. 28.
    Storhoff JJ, Lazarides AA, Mucic RC, Mirkin CA, Letsinger RL, Schatz GC (2000) What controls the optical properties of DNA-linked gold nanoparticle assemblies? J Am Chem Soc 122(19):4640–4650. doi: 10.1021/ja993825l CrossRefGoogle Scholar
  29. 29.
    Pearson RG (1963) Hard and soft acids and bases. J Am Chem Soc 85(22):3533–3539. doi: 10.1021/ja00905a001 CrossRefGoogle Scholar
  30. 30.
    Sancho-Parramon J, Janicki V, Dubček P, Karlušić M, Gracin D, Jakšić M, Bernstorff S, Meljanac D, Juraić K (2010) Optical and structural properties of silver nanoparticles in glass matrix formed by thermal annealing of field assisted film dissolution. Opt Mater 32(4):510–514CrossRefGoogle Scholar
  31. 31.
    Smithard M (1973) Size effect on the optical and paramagnetic absorption of silver particles in a glass matrix. Solid State Commun 13(2):153–156CrossRefGoogle Scholar
  32. 32.
    Chatterjee A, Santra M, Won N, Kim S, Kim JK, Kim SB, Ahn KH (2009) Selective fluorogenic and chromogenic probe for detection of silver ions and silver nanoparticles in aqueous media. J Am Chem Soc 131(6):2040CrossRefGoogle Scholar
  33. 33.
    Hung YL, Hsiung TM, Chen YY, Huang YF, Huang CC (2010) Colorimetric detection of heavy metal ions using label-free gold nanoparticles and alkanethiols. J Phys Chem C 114(39):16329–16334CrossRefGoogle Scholar
  34. 34.
    Lin CY, Yu CJ, Lin YH, Tseng WL (2010) Colorimetric sensing of silver (I) and mercury (II) ions based on an assembly of tween 20-stabilized gold nanoparticles. Anal Chem 82(16):6830–6837CrossRefGoogle Scholar
  35. 35.
    Lin YH, Tseng WL (2009) Highly sensitive and selective detection of silver ions and silver nanoparticles in aqueous solution using an oligonucleotide-based fluorogenic probe. Chem Commun 43:6619–6621CrossRefGoogle Scholar
  36. 36.
    Tan EZ, Lang XF, Wang X, You TT, Guo L (2012) Functionalized gold nanoparticles as nanosensor for sensitive and selective detection of silver ions and silver nanoparticles by surface-enhanced Raman scattering. Analyst 137:3925–3928Google Scholar
  37. 37.
    Tan SS, Teo YN, Kool ET (2010) Selective sensor for silver ions built from polyfluorophores on a DNA backbone. Org Lett 12(21):4820–4823CrossRefGoogle Scholar
  38. 38.
    Wang F, Wu Y, Zhan S, He L, Zhi W, Zhou X, Zhou P (2012) A simple and sensitive colorimetric detection of silver ions based on cationic polymer-directed AuNPs aggregation. Aust J Chem doi: 10.1071/CH12375
  39. 39.
    Wang L, Tian J, Li H, Zhang Y, Sun X (2010) A novel single-labeled fluorescent oligonucleotide probe for silver (I) ion detection based on the inherent quenching ability of deoxyguanosines. Analyst 136(5):891–893CrossRefGoogle Scholar
  40. 40.
    Preininger C, Wolfbeis OS (1996) Disposable cuvette test with integrated sensor layer for enzymatic determination of heavy metals. Biosens Bioelectron 11(10):981–990CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2012

Authors and Affiliations

  1. 1.Department of BiochemistrySanandaj Branch, Islamic Azad UniversitySanandajIran
  2. 2.Department of Chemistry and Nanoscience & Nanotechnology Research Center (NNRC)Razi UniversityKermanshahIran
  3. 3.Department of ChemistryKermanshah Branch, Islamic Azad UniversityKermanshahIran
  4. 4.Young Researchers Club, Kermanshah BranchIslamic Azad UniversityKermanshahIran

Personalised recommendations