Skip to main content

Non-enzymatic electrochemical sensing of glucose

Abstract

This article reviews the progress made in the past 5 years in the field of direct and non-enzymatic electrochemical sensing of glucose. Following a brief discussion of the merits and limitations of enzymatic glucose sensors, we discuss the history of unraveling the mechanism of direct oxidation of glucose and theories of non-enzymatic electrocatalysis. We then review non-enzymatic glucose electrodes based on the use of the metals platinum, gold, nickel, copper, of alloys and bimetals, of carbon materials (including graphene and graphene-based composites), and of metal-metal oxides and layered double hydroxides. This review contains more than 200 refs.

This article reviews the history of unraveling the mechanism of direct electrochemical glucose oxidation and the attempts to successfully develop non-enzymatic electrochemical glucose sensors over the past 5 years.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. WHO (2009) Fact sheet No. 312 in World Health Organization

  2. Wang J (2008) Electrochemical glucose biosensors. Chem Rev 108:814–825

    CAS  Article  Google Scholar 

  3. Updike SJ, Hicks GP (1967) The enzyme electrode. Nature 214:986–988

    CAS  Article  Google Scholar 

  4. Clark LC, Lyons C (1962) Electrode systems for continuous monitoring in cardiovascular surgery. Ann N Y Acad Sci 102:29–45

    CAS  Article  Google Scholar 

  5. Tsai TW, Heckert G, Neves LF, Tan YQ, Kao DY, Harrison RG, Resasco DE, Schmidtke DW (2009) Adsorption of glucose oxidase onto single-walled carbon nanotubes and its application in layer-by-layer biosensors. Anal Chem 81:7917–7925

    CAS  Article  Google Scholar 

  6. Kang XH, Mai ZB, Zou XY, Cai PX, Mo JY (2007) A novel glucose biosensor based on immobilization of glucose oxidase in chitosan on a glassy carbon electrode modified with gold-platinum alloy nanoparticles/multiwall carbon nanotubes. Anal Biochem 363:143–150

    CAS  Article  Google Scholar 

  7. Li X, Zhu QY, Tong SF, Wang W, Song WB (2009) Self-assembled microstructure of carbon nanotubes for enzymeless glucose sensor. Sens Actuators B 136:444–450

    Article  CAS  Google Scholar 

  8. Wilson R, Turner APF (1992) Glucose oxidase: an ideal enzyme. Biosens Bioelectron 7:165–185

    CAS  Article  Google Scholar 

  9. Park S, Boo H, Chung TD (2006) Electrochemical non-enzymatic glucose sensors. Anal Chim Acta 556:46–57

    CAS  Article  Google Scholar 

  10. Toghill KE, Compton RG (2010) Electrochemical non-enzymatic glucose sensors: a perspective and an evaluation. Int J Electrochem Sci 5:1246–1301

    CAS  Google Scholar 

  11. Steiner MS, Duerkop A, Wolfbeis OS (2011) Optical methods for sensing glucose. Chem Soc Rev 40:4805–4839

    CAS  Article  Google Scholar 

  12. Wang Y, Xu H, Zhang J, Li G (2008) Electrochemical sensors for clinic analysis. Sensors 8:2043–2081

    CAS  Article  Google Scholar 

  13. Morikawa M, Kimizuka N, Yoshihara M, Endo T (2002) New colorimetric detection of glucose by means of electron-accepting indicators: ligand substitution of [Fe(acac)3− n(phen)n]n+complexes triggered by electron transfer from glucose oxidase. Chem Eur J 8:5580–5584

    CAS  Article  Google Scholar 

  14. Miwa Y, Nishizawa M, Matsue T, Uchida I (1994) A conductometric glucose sensor based on a twin-microband electrode coated with a polyaniline thin film. Bull Chem Soc Jp 67:2864–2866

    CAS  Article  Google Scholar 

  15. Mansouri S, Schultz JS (1984) A miniature optical glucose sensor based on affinity binding. Nat Biotech 2:885–890

    CAS  Article  Google Scholar 

  16. Pickup JC, Hussain F, Evans ND, Rolinski OJ, Birch DJS (2005) Fluorescence-based glucose sensors. Biosens Bioelectron 20:2555–2565

    CAS  Article  Google Scholar 

  17. Liu J, Wang J (2001) A novel improved design for the first-generation glucose biosensor. Food Technol Biotechnol 39:55–58

    CAS  Google Scholar 

  18. Tang FQ, Meng XW, Chen D, Ran JG, Zheng CQ (2000) Glucose biosensor enhanced by nanoparticles. Sci China B 43:268–274

    CAS  Article  Google Scholar 

  19. Degani Y, Heller A (1989) Electrical communication between redox centers of glucose oxidase and electrodes via electrostatically and covalently bound redox polymers. J Am Chem Soc 111:2357–2358

    CAS  Article  Google Scholar 

  20. Accu-Chek (2010) http://www.accu-chek.co.uk/gb

  21. Li J, Lin X (2007) Glucose biosensor based on immobilization of glucose oxidase in poly (o-aminophenol) film on polypyrrole-Pt nanocomposite modified glassy carbon electrode. Biosens Bioelectron 22:2898–2905

    CAS  Article  Google Scholar 

  22. Wu B, Zhang G, Shuang S, Choi MMF (2004) Biosensors for determination of glucose with glucose oxidase immobilized on an eggshell membrane. Talanta 64:546–553

    CAS  Article  Google Scholar 

  23. Han K, Wu Z, Lee J, Ahn I, Park JW, Min BR, Lee K (2005) Activity of glucose oxidase entrapped in mesoporous gels. Biochem Eng J 22:161–166

    CAS  Article  Google Scholar 

  24. Heller A, Feldman B (2010) Electrochemistry in diabetes management. Acc Chem Res 43:963–973

    CAS  Article  Google Scholar 

  25. Mao F, Heller A Preparation of transition metal complexes with (pyridyl)imidazole ligands for use in enzyme-based electrochemical sensors. (Main IPC: C07F015-00., Patent Application Country: Application: US; Patent Country: US; Priority Application Country: US, 2003), 2002-143300; 2001-290537, p 23

  26. Heller A, Feldman BJ, Say J, Vreeke MS, Tomasco MF (2003) Small volume in vitro analyte sensor. Main IPC: G01N027-327.; Secondary IPC: C12Q001-00., PCT 98-US2652; 97-795767, p 83

  27. Loeb W (1909) Sugar decomposition III. Electrolysis of dextrose. Biochemische Zeitschrift Biochem Z 17:132–144

    CAS  Google Scholar 

  28. Largeaud F, Kokoh KB, Beden B, Lamy C (1995) On the electrochemical reactivity of anomers: electrocatalytic oxidation of α-and β-d-glucose on platinum electrodes in acid and basic media. J Electroanal Chem 397:261–269

    Article  Google Scholar 

  29. Pletcher D (1984) Electrocatalysis: present and future. J Appl Electrochem 14:403–415

    CAS  Article  Google Scholar 

  30. Kokkinidis G, Leger JM, Lamy C (1988) Structural effects in electrocatalysis: oxidation of D-glucose on pt (100), (110) and (111) single crystal electrodes and the effect of upd adlayers of Pb, Tl and Bi. J Electroanal Chem Interfacial Electrochem 242:221–242

    CAS  Article  Google Scholar 

  31. Hsiao MW, Adzic RR, Yeager EG (1996) Electrochemical oxidation of glucose on single crystal and polycrystalline gold surfaces in phosphate buffer. J Electrochem Soc 143:759–767

    CAS  Article  Google Scholar 

  32. Vasil’ev YB, Khazova OA, Nikolaeva NN (1985) Kinetics and mechanism of glucose electrooxidation on different electrode-catalysts: Part II. Effect of the nature of the electrode and the electrooxidation mechanism. J Electroanal Chem Interfacial Electrochem 196:127–144

    Article  Google Scholar 

  33. Bagotskii VS, Vasil’ev YB (1967) Mechanism of electrooxidation of methanol on the platinum electrode. Electrochim Acta 12:1323–1343

    CAS  Article  Google Scholar 

  34. Larew LA, Johnson DC (1989) Transient generation of diffusion layer alkalinity for the pulsed amperometric detection of glucose in low capacity buffers having neutral and acidic pH values. J Electroanal Chem Interfacial Electrochem 262:167–182

    CAS  Article  Google Scholar 

  35. Burke LD (1994) Premonolayer oxidation and its role in electrocatalysis. Electrochim Acta 39:1841–1848

    CAS  Article  Google Scholar 

  36. Ernst S, Heitbaum J, Hamann CH (1979) The electrooxidation of glucose in phosphate buffer solutions: part I. Reactivity and kinetics below 350 mV/RHE. J Electroanal Chem 100:173–183

    CAS  Article  Google Scholar 

  37. Shim JH, Jang KY, Lee C, Lee Y (2011) Applications of porous Pt-filled micropore electrode: direct amperometric glucose detection and potentiometric pH sensing. Electroanalysis 23:2063–2069

    CAS  Article  Google Scholar 

  38. Joo SY, Park SJ, Chung TD, Kim HC (2007) Integration of a nanoporous platinum thin film into a microfluidic system for non-enzymatic electrochemical glucose sensing. Anal Sci 23:277–281

    Article  Google Scholar 

  39. Yuan JH, Wang K, Xia XH (2005) Highly ordered platinum-nanotubule arrays for amperometric glucose sensing. Adv Funct Mater 15:803–809

    CAS  Article  Google Scholar 

  40. Guo MQ, Hong HS, Tang XN, Fang HD, Xu XH (2012) Ultrasonic electrodeposition of platinum nanoflowers and their application in nonenzymatic glucose sensors. Electrochim Acta 63:1–8

    CAS  Article  Google Scholar 

  41. Huang J (2008) 3-D nanoporous Pt electrode prepared by a 2-D UPD monolayer process. Electroanalysis 20:2229–2234

    CAS  Article  Google Scholar 

  42. Chou C, Chen J, Tai C, Sun I, Zen JA (2008) Nonenzymatic glucose sensor using nanoporous platinum electrodes prepared by electrochemical alloying/dealloying in a water-insensitive zinc chloride-1-ethyl-3- methylimidazolium chloride ionic liquid. Electroanalysis 20:771–775

    CAS  Article  Google Scholar 

  43. Lee Y, Park D, Park J, Kim Y (2008) Fabrication and optimization of a nanoporous platinum electrode and a non-enzymatic glucose micro-sensor on silicon. Sensors 8:6154–6164

    CAS  Article  Google Scholar 

  44. Song Y, Zhang D, Gao W, Xia X (2005) Nonenzymatic glucose detection by using a three-dimensionally ordered, macroporous platinum template. Chem Eur J 11:2177–2182

    CAS  Article  Google Scholar 

  45. Lee YJ, Park DJ, Park JY (2008) Fully packaged nonenzymatic glucose microsensors with nanoporous platinum electrodes for anti-fouling. IEEE Sens J 8:1922–1927

    CAS  Article  Google Scholar 

  46. Cao Z, Zou Y, Xiang C, Sun L, Xu F (2007) Amperometric glucose biosensor based on ultrafine platinum nanoparticles. Anal Lett 40:2116–2127

    CAS  Article  Google Scholar 

  47. Shen QM, Jiang LP, Zhang H, Min QH, Hou WH, Zhu JJ (2008) Three-dimensional dendritic Pt nanostructures: Sonoelectrochemical synthesis and electrochemical applications. J Phys Chem C 112:16385–16392

    CAS  Article  Google Scholar 

  48. Luo P, Zhang F, Baldwin RP (1991) Comparison of metallic electrodes for constant-potential amperometric detection of carbohydrates, amino acids and related compounds in flow systems. Anal Chim Acta 244:169–178

    CAS  Article  Google Scholar 

  49. Fanguy C, Henry CS (2002) Pulsed amperometric detection of carbohydrates on an electrophoretic microchip. Analyst 127:1021–1023

    CAS  Article  Google Scholar 

  50. Park SY, Park SJ, Jeong RA, Boo HK, Park JY, Kim HC, Chung TD (2012) Nonenzymatic continuous glucose monitoring in human whole blood using electrified nanoporous Pt. Biosens Bioelectron 31:284–291

    CAS  Article  Google Scholar 

  51. Vasil’ev YB, Khazova OA, Nikolaeva NN (1985) Kinetics and mechanism of glucose electrooxidation on different electrode-catalysts: part I. Adsorption and oxidation on platinum. J Electroanal Chem Interfacial Electrochem 196:105–125

    Article  Google Scholar 

  52. Burke LD (2004) Scope for new applications for gold arising from the electrocatalytic behaviour of its metastable surface states. Gold Bull 37:125–135

    CAS  Article  Google Scholar 

  53. Hsiao MW, Adzic RR, Yeager EB (1992) The effects of adsorbed anions on the oxidation of D-glucose on gold single crystal electrodes. Electrochim Acta 37:357–363

    CAS  Article  Google Scholar 

  54. Luna AMC, Mele MFL, Arvia AJ (1992) The electro-oxidation of glucose on microcolumnar gold electrodes in different neutral solutions. J Electroanal Chem 323:149–162

    Article  Google Scholar 

  55. Cheng TM, Huang TK, Lin HK, Tung SP, Chen YL, Lee CY, Chiu HT (2010) (110)-Exposed gold nanocoral electrode as low onset potential selective glucose sensor. ACS Appl Mater Interfaces 2:2773–2780

    CAS  Article  Google Scholar 

  56. Xu FG, Cui K, Sun YJ, Guo CL, Liu ZL, Zhang Y, Shi Y, Li Z (2010) Facile synthesis of urchin-like gold submicrostructures for nonenzymatic glucose sensing. Talanta 82:1845–1852

    CAS  Article  Google Scholar 

  57. Li Y, Song YY, Yang C, Xia XH (2007) Hydrogen bubble dynamic template synthesis of porous gold for nonenzymatic electrochemical detection of glucose. Electrochem Commun 9:981–988

    CAS  Article  Google Scholar 

  58. Xia Y, Huang W, Zheng JF, Niu ZJ, Li ZL (2011) Nonenzymatic amperometric response of glucose on a nanoporous gold film electrode fabricated by a rapid and simple electrochemical method. Biosens Bioeletron 26:3555–3561

    CAS  Article  Google Scholar 

  59. Cho S, Kang C (2007) Nonenzymatic glucose detection with good selectivity against ascorbic acid on a highly porous gold electrode subjected to amalgamation treatment. Electroanalysis 19:2315–2320

    CAS  Article  Google Scholar 

  60. Li JJ, Yuan R, Chai YQ, Che X, Li WJ, Zhong X (2011) Nonenzymatic glucose sensor based on a glassy carbon electrode modified with chains of platinum hollow nanoparticles and porous gold nanoparticles in a chitosan membrane. Microchim Acta 172:163–169

    CAS  Article  Google Scholar 

  61. Kurniawan F, Tsakova V, Mirsky VM (2006) Gold nanoparticles in nonenzymatic electrochemical detection of sugars. Electroanalysis 18:1937–1942

    CAS  Article  Google Scholar 

  62. Yi Q, Yu W (2009) Electrocatalytic activity of a novel titanium-supported nanoporous gold catalyst for glucose oxidation. Microchim Acta 165:381–386

    CAS  Article  Google Scholar 

  63. Cherevko S, Chung C (2009) Gold nanowire array electrode for non-enzymatic voltammetric and amperometric glucose detection. Sens Actuators B 142:216–223

    Article  CAS  Google Scholar 

  64. Yu J, Lu S, Li J, Zhao F, Zeng B (2007) Characterization of gold nanoparticles electrochemically deposited on amine-functioned mesoporous silica films and electrocatalytic oxidation of glucose. J Solid State Electrochem 11:1211–1219

    CAS  Article  Google Scholar 

  65. Feng D, Wang F, Chen Z (2009) Electrochemical glucose sensor based on one-step construction of gold nanoparticle-chitosan composite film. Sens Actuators B 138:539–544

    Article  CAS  Google Scholar 

  66. Zhao J, Yu J, Wang F, Hu S (2007) Fabrication of gold nanoparticle-dihexadecyl hydrogen phosphate film on a glassy carbon electrode. Microchim Acta 156:277–282

    Google Scholar 

  67. Bai Y, Yang W, Sun Y, Sun C (2008) Enzyme-free glucose sensor based on a three-dimensional gold film electrode. Sens Actuators B 134:471–476

    Article  CAS  Google Scholar 

  68. Zhou Y, Yang S, Qian Q, Xia X (2009) Gold nanoparticles integrated in a nanotube array for electrochemical detection of glucose. Electrochem Commun 11:216–219

    CAS  Article  Google Scholar 

  69. Ma Y, Di J, Yan X, Zhao M, Lu Z, Tu Y (2009) Direct electrodeposition of gold nanoparticles on indium tin oxide surface and its application. Biosens Bioelectron 24:1480–1483

    CAS  Article  Google Scholar 

  70. Zhao W, Xu JJ, Shi CG, Chen HY (2006) Fabrication, characterization and application of gold nano-structured film. Electrochem Commun 8:773–778

    CAS  Article  Google Scholar 

  71. Welch E, Mead DAJ, Johnson DC (1988) A comparison of pulsed amperometric detection and conductivity detection for carbohydrates. Anal Chim Acta 204:323–327

    CAS  Article  Google Scholar 

  72. Bindra DS, Wilson GS (1989) Pulsed amperometric detection of glucose in biological fluids at a surface-modified gold electrode. Anal Chem 61:2566–2570

    CAS  Article  Google Scholar 

  73. SurareungchaiW DW, Tasakorn P (2001) Quadruple-pulsed amperometric detection for simultaneous flow injection determination of glucose and fructose. Anal Chim Acta 448:215–220

    Article  Google Scholar 

  74. Sattar MA, Conway BE (1969) Eelectrochemistry of the nickel-oxide electrode-VI. Surface oxidation of nickel anodes in alkaline solution. Electrochim Acta 14:705–710

    Article  Google Scholar 

  75. Fleischmann M, Korinek K, Pletcher D (1971) The oxidation of organic compounds at a nickel anode in alkaline solution. J Electroanal Chem Interfacial Electrochem 31:39–49

    CAS  Article  Google Scholar 

  76. Bode H, Dehmelt K, Witte J (1966) Zur Kenntnis der Nickelhydroxidelektrode–I. Über das Nickel (II)-hydroxidhydrat. Electrochim Acta 11:1079–1087

    CAS  Article  Google Scholar 

  77. Guzman RSS, Vilche JR, Arvia AJ (1978) The potentiodynamic behaviour of iron in alkaline solutions. Electrochim Acta 8:67–70

    Google Scholar 

  78. Wolf JF, Yeh LSR, Damjanovic A (1981) Anodic oxide films at nickel electrodes in alkaline solutions. I. Kinetics of growth of the β-Ni(OH)2 phase. Electrochim Acta 26:409–416

    CAS  Article  Google Scholar 

  79. Lu LM, Zhang L, Qu FL, Lu HX, Zhang XB, Wu ZS, Huan SY, Wang QA, Shen GL, Yu RQ (2009) A nano-Ni based ultrasensitive nonenzymatic electrochemical sensor for glucose: enhancing sensitivity through a nanowire array strategy. Biosens Bioeletron 25:218–223

    CAS  Article  Google Scholar 

  80. Zhao CZ, Shao CL, Li MH, Jiao K (2007) Flow-injection analysis of glucose without enzyme based on electrocatalytic oxidation of glucose at a nickel electrode. Talanta 71:1769–1773

    CAS  Article  Google Scholar 

  81. Salimi A, Roushani M (2005) Non-enzymatic glucose detection free of ascorbic acid interference using nickel powder and nafion sol–gel dispersed renewable carbon ceramic electrode. Electrochem Commun 7:879–887

    CAS  Article  Google Scholar 

  82. Ivandini TA, Sato R, Makide Y, Fujishima A, Einaga Y (2004) Electroanalytical application of modified diamond electrodes. Diamond Relat Mater 13:2003–2008

    CAS  Article  Google Scholar 

  83. You T, Niwa O, Chen Z, Hayashi K, Tomita M, Hirono S (2003) An amperometric detector formed of highly dispersed Ni nanoparticles embedded in a graphite-like carbon film electrode for sugar determination. Anal Chem 75:5191–5196

    CAS  Article  Google Scholar 

  84. Sue JW, Hung C, Chen W, Zen J (2008) Amperometric determination of sugars at activated barrel plating nickel electrodes. Electroanalysis 20:1647–1654

    CAS  Article  Google Scholar 

  85. Goto M, Miyahara H, Ishii D (1990) Constant-potential amperometric detector for carbohydrates at a nickel(III) oxide electrode for micro-scale flow-injection analysis and high-performance liquid chromatography. J Chromatogr A 515:213–220

    CAS  Article  Google Scholar 

  86. Stitz A, Buchberger W (1994) Studies on electrochemical reactions at metal-oxide electrodes for combination with high-performance liquid chromatography. Electroanalysis 6:251–258

    CAS  Article  Google Scholar 

  87. Uto M, Kodama K, Ishimori K, Kudo Y, Hoshi S, Matsubara M (1994) Nickel-coated hollow-fiber electrode for the electrochemical detection of carbohydrates. Anal Sci 10:835–844

    CAS  Article  Google Scholar 

  88. Cataldi RI, Desimoni E, Ricciardi G, Lelj F (1995) Study of the nickel-based chemically modified electrode obtained by electrochemical deposition of an NiII-tetramethyl-dibenzo-tetraaza [14] annulene complex. Redox catalysis of carbohydrates in alkaline solutions. II. Electroanalysis 7:435–441

    CAS  Article  Google Scholar 

  89. Casella G, Desimoni E, Salvi AM (1991) Chemically modified electrode for the detection of carbohydrates. Anal Chim Acta 243:61–63

    CAS  Article  Google Scholar 

  90. Mu Y, Jia DL, He YY, Miao YQ, Wu HL (2011) Nano nickel oxide modified non-enzymatic glucose sensors with enhanced sensitivity through an electrochemical process strategy at high potential. Biosens Bioelectron 26:2948–2952

    CAS  Article  Google Scholar 

  91. Luo ZJ, Yin S, Wang K, Li HM, Wang LG, Xu H, Xia JX (2012) Synthesis of one-dimensional β-Ni(OH)2 nanostructure and their application as nonenzymatic glucose sensors. Mater Chem Phys 132:387–394

    CAS  Article  Google Scholar 

  92. Male KB, Hrapovic S, Liu YL, Wang DS, Luong JHT (2004) Electrochemical detection of carbohydrates using copper nanoparticles and carbon nanotubes. Anal Chim Acta 516:35–41

    CAS  Article  Google Scholar 

  93. Sun F, Li L, Liu P, Lian YF (2011) Nonenzymatic electrochemical glucose sensor based on novel copper film. Electroanalysis 23:395–401

    CAS  Article  Google Scholar 

  94. Wu HX, Cao WM, Li Y, Liu G, Wen Y, Yang HF, Yang SP (2010) In situ growth of copper nanoparticles on multiwalled carbon nanotubes and their application as non-enzymatic glucose sensor materials. Electrochim Acta 55:3734–3740

    CAS  Article  Google Scholar 

  95. Yang JA, Zhang WD, Gunasekaran S (2010) An amperometric non-enzymatic glucose sensor by electrodepositing copper nanocubes onto vertically well-aligned multi-walled carbon nanotube arrays. Biosens Bioelectron 26:279–284

    CAS  Article  Google Scholar 

  96. Jiang LC, Zhang WD (2010) A highly sensitive nonenzymatic glucose sensor based on CuO nanoparticles-modified carbon nanotube electrode. Biosens Bioelectron 25:1402–1407

    CAS  Article  Google Scholar 

  97. Reitz E, Jia WZ, Gentile M, Wang Y, Lei Y (2008) CuO nanospheres based nonenzymatic glucose sensor. Electroanalysis 20:2482–2486

    CAS  Article  Google Scholar 

  98. Wang W, Zhang LL, Tong SF, Li X, Song WB (2009) Effect of sodium borohydride on growth process of controlled flower-like nanostructured Cu2O/CuO films and their hydrophobic property. Biosens Bioelectron 25:708–714

    CAS  Article  Google Scholar 

  99. Zhuang ZJ, Su XD, Yuan HY, Sun Q, Xiao D, Choi MMF (2008) An improved sensitivity non-enzymatic glucose sensor based on a CuO nanowire modified Cu electrode. Analyst 133:126–132

    CAS  Article  Google Scholar 

  100. Khatib EKM, Hameed RMA (2011) Development of Cu2O/Carbon Vulcan XC-72 as non-enzymatic sensor for glucose determination. Biosens Bioelectron 26:3542–3548

    Article  CAS  Google Scholar 

  101. Zhang L, Li H, Ni YH, Li J, Liao KM, Zhao GC (2009) Porous cuprous oxide microcubes for non-enzymatic amperometric hydrogen peroxide and glucose sensing. Electrochem Commun 11:812–815

    CAS  Article  Google Scholar 

  102. Li CL, Su Y, Zhang SW, Lv XY, Xia HL, Wang YJ (2010) An improved sensitivity nonenzymatic glucose biosensor based on a CuxO modified electrode. Biosens Bioelectron 26:903–907

    Article  CAS  Google Scholar 

  103. Lee H, Yoon SW, Kim EJ, Park J (2007) In-situ growth of copper sulfide nanocrystals on multiwalled carbon nanotubes and their application as novel solar cell and amperometric glucose sensor materials. Nano Lett 7:778–784

    CAS  Article  Google Scholar 

  104. Fleischmann M, Korinek K, Pletcher D (1972) The kinetics and mechanism of the oxidation of amines and alcohols at oxide-covered nickel, silver, copper, and cobalt electrodes. J Chem Soc Perkin Trans 2:1396–1402

    Google Scholar 

  105. Kano K, Takagi K, Inoue K, Ikeda T, Ueda T (1996) Copper electrodes for stable subpicomole detection of carbohydrates in high-performance liquid chromatography. J Chromatogr A 721:53–57

    CAS  Article  Google Scholar 

  106. Kano K, Torimura M, Esaka Y, Goto M, Ueda (1994) T Electrocatalytic oxidation of carbohydrates at copper (II)-modified electrodes and its application to flow-through detection. J Electroanal Chem 372:137–143

    CAS  Article  Google Scholar 

  107. Xie Y, Huber CO (1991) Electrocatalysis and amperometric detection using an electrode made of copper oxide and carbon paste. Anal Chem 63:1714–1719

    CAS  Article  Google Scholar 

  108. Miller B (1969) Split-ring disk study of the anodic processes at a copper electrode in alkaline solution. J Electrochem Soc 116:1675–1680

    CAS  Article  Google Scholar 

  109. Ghanem A, Compton RG, Coles BA, Canals A, Vuorema A, John P, Marken F (2005) Microwave activation of the electro-oxidation of glucose in alkaline media. Phys Chem Chem Phys 7:3552–3559

    CAS  Article  Google Scholar 

  110. Yeo IH, Johnson DC (2000) Anodic response of glucose at copper-based alloy electrodes. J Electroanal Chem 484:157–163

    CAS  Article  Google Scholar 

  111. Chen DJ, Lu YH, Wang AJ, Feng JJ, Huo TT, Dong WJ (2012) Facile synthesis of ultra-long Cu microdendrites for the electrochemical detection of glucose. J Solid State Electrochem 16:1313–1321

    CAS  Article  Google Scholar 

  112. Xu L, Xia JX, Li HM, Li HN, Wang K, Yin S (2011) Ionic liquid assisted solvothermal synthesis of Cu polyhedron-pattern nanostructures and their application as enhanced nanoelectrocatalysts for glucose detection. Eur J Inorg Chem 9:1361–1365

    Google Scholar 

  113. Babu TGS, Ramachandran T, Nair B (2010) Single step modification of copper electrode for the highly sensitive and selective non-enzymatic determination of glucose. Microchim Acta 169:49–55

    Google Scholar 

  114. Huang T, Lin K, Tung S, Cheng T, Chang I, Hsieh Y, Lee C, Chiu H (2009) Glucose sensing by electrochemically grown copper nanobelt electrode. J Electroanal Chem 636:123–127

    CAS  Article  Google Scholar 

  115. Watanabe T, Ivandini TA, Makide Y, Fujishima A, Einaga Y (2006) Selective detection method derived from a controlled diffusion process at metal-modified diamond electrodes. Anal Chem 78:7857–7860

    CAS  Article  Google Scholar 

  116. Zhao J, Wang F, Yu J, Hu S (2006) Electro-oxidation of glucose at self-assembled monolayers incorporated by copper particles. Talanta 70:449–454

    CAS  Article  Google Scholar 

  117. Tong S, Wang W, Li X, Xu Y, Song W (2009) Electrochemical preparation of copper-based/titanate intercalation electrode material. J Phys Chem C 113:6832–6838

    CAS  Article  Google Scholar 

  118. Sattayasamitsathit S, Thavarungkul P, Thammakhet C, Limbut W, Numnuam A, Buranachai C, Kanatharana P (2009) Fabrication of nanoporous copper film for electrochemical detection of glucose. Electroanalysis 21:2371–2377

    CAS  Article  Google Scholar 

  119. Chen ZL, Hibbert DB (1997) Simultaneous amperometric and potentiometric detection of sugars, polyols and carboxylic acids in flow systems using copper wire electrodes. J Chromatogr A 766:27–33

    CAS  Article  Google Scholar 

  120. Zhang YC, Sub L, Manuzzi D, Monteros HVE, Jia WZ, Huo DQ, Hou CJ, Lei Y (2012) Ultrasensitive and selective non-enzymatic glucose detection using copper Nanowires. Biosens Bioelectron 31:426–432

    CAS  Article  Google Scholar 

  121. Cao F, Gong J (2012) Nonenzymatic glucose sensor based on CuO microfibers composed of CuO nanoparticles. Anal Chim Acta 723:39–44

    CAS  Article  Google Scholar 

  122. Prathap MUA, Kaur B, Srivastava R (2012) Hydrothermal synthesis of CuO micro-/nanostructures and their applications in the oxidative degradation of methylene blue and non-enzymatic sensing of glucose/H2O2. J Colloid Interface Sci 370:144–154

    Article  CAS  Google Scholar 

  123. Zhang P, Zhang L, Zhao GC, Feng F (2012) A highly sensitive nonenzymatic glucose sensor based on CuO nanowires. Microchim Acta 176:411–417

    CAS  Article  Google Scholar 

  124. Jafarian M, Forouzandeh F, Danaee I, Gobal F, Mahjani MG (2009) Electrocatalytic oxidation of glucose on Ni and NiCu alloy modified glassy carbon electrode. J Solid State Electrochem 13:1171–1179

    CAS  Article  Google Scholar 

  125. Lee YJ, Park JY (2011) A coral-like macroporous gold–platinum hybrid 3D electrode for enzyme-free glucose detection. Sens Actuators B 155:134–139

    Article  CAS  Google Scholar 

  126. Qiu R, Zhang XL, Qiao R, Li Y, Kim YI, Kang YS (2007) CuNi dendritic material: synthesis, mechanism discussion, and application as glucose sensor. Chem Mater 19:4174–4180

    CAS  Article  Google Scholar 

  127. Guo MQ, Wang R, Xu XH (2011) Electrosynthesis of pinecone-shaped Pt–Pb nanostructures based on the application in glucose detection. Mater Sci Eng C 31:1700–1705

    CAS  Article  Google Scholar 

  128. Cao F, Guo S, Ma HY, Shan DC, Yang SX, Gong J (2011) Nickel oxide microfibers immobilized onto electrode by electrospinning and calcination for nonenzymatic glucose sensor and effect of calcination temperature on the performance. Biosens Bioeletron 26:2756–2760

    CAS  Article  Google Scholar 

  129. Shim JH, Cha A, Lee YM, Lee CM (2011) Nonenzymatic amperometric glucose sensor based on nanoporous gold/ruthenium electrode. Electroanalysis 23:2057–2062

    CAS  Article  Google Scholar 

  130. Gutés A, Carraro C, Maboudian (2011) Nonenzymatic glucose sensing based on deposited palladium nanoparticles on epoxy-silver electrodes. Electrochim Acta 56:5855–5859

    Article  CAS  Google Scholar 

  131. Chen XL, Pan HB, Liu HF, Du M (2010) Nonenzymatic glucose sensor based on flower-shaped Au@Pd core–shell nanoparticles–ionic liquids composite film modified glassy carbon electrodes. Electrochim Acta 56:636–643

    CAS  Article  Google Scholar 

  132. Shi J, Ci PL, Wang F, Peng H, Yang PX, Wang LW, Ge SL, Wang QJ, Chu PK (2011) Nonenzymatic glucose sensor based on over-oxidized polypyrrole modified Pd/Si microchannel plate electrode. Biosens Bioeletron 26:2579–2584

    CAS  Article  Google Scholar 

  133. Huang HY, Chen PY (2010) PdNi- and Pd-coated electrodes prepared by electrodeposition from ionic liquid for nonenzymatic electrochemical determination of ethanol and glucose in alkaline media. Talanta 83:379–385

    CAS  Article  Google Scholar 

  134. Hui SC, Zhang J, Chen XJ, Xu HH, Ma DF, Liu YL, Tao BR (2011) Study of an amperometric glucose sensor based on Pd–Ni/SiNW electrode. Sens Actuators B 155:592–597

    Article  CAS  Google Scholar 

  135. Mahshid SS, Mahshid S, Dolati A, Ghorbani M, Yang LX, Luo SL, Cai QY (2011) Template-based electrodeposition of Pt/Ni nanowires and its catalytic activity towards glucose oxidation. Electrochim Acta 58:551–555

    CAS  Article  Google Scholar 

  136. Holt-Hindle P, Nigro S, Asmussen M, Chen A (2008) Amperometric glucose sensor based on platinum–iridium nanomaterials. Electrochem Commun 10:1438–1441

    CAS  Article  Google Scholar 

  137. Wang J, Thomas DF, Chen A (2008) Nonenzymatic electrochemical glucose sensor based on nanoporous PtPb networks. Anal Chem 80:997–1004

    CAS  Article  Google Scholar 

  138. Bai Y, Sun Y, Sun C (2008) Pt–Pb nanowire array electrode for enzyme-free glucose detection. Biosens Bioelectron 24:579–585

    CAS  Article  Google Scholar 

  139. Morita M, Niwa O, Tou S, Watanabe N (1999) Nickel content dependence of electrochemical behavior of carbohydrates on a titanium–nickel alloy electrode and its application to a liquid chromatography detector. J Chromatogr A 837:17–24

    CAS  Article  Google Scholar 

  140. Marioli JM, Kuwana T (1993) Electrochemical detection of carbohydrates at nickel-copper and nickel-chromium-iron alloy electrodes. Electroanalysis 5:11–15

    CAS  Article  Google Scholar 

  141. Marioli JM, Luo PF, Kuwana T (1993) Nickel-chromium alloy electrode as a carbohydrate detector for liquid chromatography. Anal Chim Acta 282:571–580

    CAS  Article  Google Scholar 

  142. Luo PF, Kuwana T (1994) Nickel-titanium alloy electrode as a sensitive and stable LCEC detector for carbohydrates. Anal Chem 66:2775–2882

    CAS  Article  Google Scholar 

  143. Mora I, Marioli JM (2001) Honey carbohydrate analysis by HPLC, with electrochemical detection, using a Ni-Cr alloy electrode. J Liq Chromatogr Relat Technol 24:711–720

    CAS  Article  Google Scholar 

  144. Noh HB, Lee KS, Chandra P, Won MS, Shim YB (2012) Application of a Cu-Co alloy dendrite on glucose and hydrogen peroxide sensors. Electrochim Acta 61:36–43

    CAS  Article  Google Scholar 

  145. Srinivasan C (2007) Graphene - mother of all graphitic materials. Curr Sci 92:1338–1339

    CAS  Google Scholar 

  146. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    CAS  Article  Google Scholar 

  147. Ye JS, Wen Y, Zhang WD, Gan LM, Xu GQ, Sheu FS (2004) Nonenzymatic glucose detection using multi-walled carbon nanotube electrodes. Electrochem Commun 6:66–70

    CAS  Article  Google Scholar 

  148. Vlandas A, Kurkina TT, Ahmad A, Kern K, Balasubramanian K (2010) Enzyme-free sugar sensing in microfluidic channels with an affinity-based single-wall carbon nanotube sensor. Anal Chem 82:6090–6097

    CAS  Article  Google Scholar 

  149. Wang JX, Sun XW, Cai XP, Lei Y, Song L, Xie SS (2007) Nonenzymatic glucose sensor using freestanding single-wall carbon nanotube films. Electrochem Solid State Lett 10:J58–J60

    CAS  Article  Google Scholar 

  150. Yang J, Jiang LC, Zhang WD, Gunasekaran SD (2010) A highly sensitive non-enzymatic glucose sensor based on a simple two-step electrodeposition of cupric oxide (CuO) nanoparticles onto multi-walled carbon nanotube arrays. Talanta 82:5–33

    Google Scholar 

  151. Kang XH, Mai ZB, Zou XY, Cai PX, Mo JY (2007) A sensitive nonenzymatic glucose sensor in alkaline media with a copper nanocluster/multiwall carbon nanotube-modified glassy carbon electrode. Anal Biochem 363:43–150

    Google Scholar 

  152. Jiang F, Wang S, Lin JJ, Jin HL, Zhang LJ, Huang SM, Wang JC (2011) Aligned SWCNT-copper oxide array as a nonenzymatic electrochemical probe for glucose. Electrochem Commun 13:63–365

    Google Scholar 

  153. Yang J, Zhang WD, Gunasekaran SD (2010) An amperometric non-enzymatic glucose sensor by electrodepositing copper nanocubes onto vertically well-aligned multi-walled carbon nanotube arrays. Biosens Bioeletron 6:279–284

    Article  CAS  Google Scholar 

  154. Zhu JH, Jiang J, Liu JP, Ding RM, Li YY, Ding H, Feng YM, Wei GM, Huang XT (2011) CNT-network modified Ni nanostructured arrays for high performance non-enzymatic glucose sensors. RSC Advances 1:1020–1025

    CAS  Article  Google Scholar 

  155. Zhang XJ, Wang GF, Zhang W, Wei Y, Fang B (2009) Fixure-reduce method for the synthesis of Cu2O/MWCNTs nanocomposites and its application as enzyme-free glucose sensor. Biosens Bioeletron 24:3395–3398

    CAS  Article  Google Scholar 

  156. Ryu JG, Kim KH, Kim HS, Hahn HT, Lashmore D (2010) Intense pulsed light induced platinum–gold alloy formation on carbon nanotubes for non-enzymatic glucose detection. Biosens Bioeletron 26:602–607

    CAS  Article  Google Scholar 

  157. Liu DY, Luo QM, Zhou FQ (2010) Nonenzymatic glucose sensor based on gold-copper alloy nanoparticles on defect sites of carbon nanotubes by spontaneous reduction. Synth Met 160:745–1748

    Google Scholar 

  158. Li LH, Zhang WD (2008) Preparation of carbon nanotubes supported platinum nanoparticles by an organic colloidal process for nonenzymatic glucose sensing. Microchim Acta 163:305–311

    CAS  Article  Google Scholar 

  159. Cui HF, Ye JS, Zhang WD, Li CM, Luongb HT, Sheu FS (2007) Selective and sensitive electrochemical detection of glucose in neutral solution using platinum–lead alloy nanoparticle/carbon nanotube nanocomposites. Anal Chim Acta 594:175–183

    CAS  Article  Google Scholar 

  160. Rong LQ, Yang C, Qian QY, Xia XH (2007) Study of the nonenzymatic glucose sensor based on highly dispersed Pt nanoparticles supported on carbon nanotubes. Talanta 72:819–824

    CAS  Article  Google Scholar 

  161. Meng L, Jin J, Yang G, Lu T, Zhang H, Cai C (2009) Nonenzymatic electrochemical detection of glucose based on palladium-single-walled carbon nanotube hybrid nanostructures. Anal Chem 81:7271–7280

    Google Scholar 

  162. Myung Y, Jang DM, Cho YJ, Kim HS, Park J, Kim J, Choi Y, Lee CJ (2009) Nonenzymatic amperometric glucose sensing of platinum, copper sulfide, and tin oxide nanoparticle-carbon nanotube hybrid nanostructures. J Phys Chem C 113:1251–1259

    CAS  Article  Google Scholar 

  163. Chen J, Zhang WD, Ye JS (2008) Nonenzymatic electrochemical glucose sensor based on MnO2/MWNTs nanocomposite. Electrochem Commun 10:1268–1271

    CAS  Article  Google Scholar 

  164. Li L, Zhang WD, Ye JS (2008) Electrocatalytic oxidation of glucose at carbon nanotubes supported PtRu nanoparticles and its detection. Electroanalysis 20:2212–2216

    CAS  Article  Google Scholar 

  165. Cui HF, Ye JS, Zhang WD, Li CM, Luong JHT, Sheu FS (2007) Selective and sensitive electrochemical detection of glucose in neutral solution using platinum–lead alloy nanoparticle/carbon nanotube nanocomposites. Anal Chim Acta 594:175–183

    CAS  Article  Google Scholar 

  166. Xiao F, Zhao F, Mei D, Mo Z, Zeng B (2009) Nonenzymatic glucose sensor based on ultrasonic-electrodeposition of bimetallic PtM (M = Ru, Pd and Au) nanoparticles on carbon nanotubes–ionic liquid composite film. Biosens Bioelectron 24:3481–3486

    CAS  Article  Google Scholar 

  167. Buratti S, Brunetti B, Mannino S (2008) Amperometric detection of carbohydrates and thiols by using a glassy carbon electrode coated with Co oxide/multi-wall carbon nanotubes catalytic system. Talanta 76:454–457

    CAS  Article  Google Scholar 

  168. Chen XM, Cai ZM, Lin ZJ, Jia T, Liu H, Jiang YQ, Chen X (2009) A novel non-enzymatic ECL sensor for glucose using palladium nanoparticles supported on functional carbon nanotubes. Biosens Bioelectron 24:3475–3480

    CAS  Article  Google Scholar 

  169. Lu LM, Zhang XB, Shen GL, Yu RQ (2012) Seed-mediated synthesis of copper nanoparticles on carbon nanotubes and their application in nonenzymatic glucose biosensors. Anal Chim Acta 715:99–104

    CAS  Article  Google Scholar 

  170. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191

    CAS  Article  Google Scholar 

  171. Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907

    CAS  Article  Google Scholar 

  172. Kim K, Park HJ, Woo BC, Kim KJ, Kim GT, Yun WS (2008) Electric property evolution of structurally defected 5 multilayer graphene. Nano Lett 8:3092–3096

    CAS  Article  Google Scholar 

  173. Bai H, Li C, Shi GQ (2011) Functional composite materials based on chemically converted graphene. Adv Mater 23:1089–1115

    CAS  Article  Google Scholar 

  174. Gan T, Hu SS (2011) Electrochemical sensors based on graphene materials. Microchim Acta 175:1–19

    CAS  Article  Google Scholar 

  175. Luo J, Jiang SS, Zhang HY, Jiang JQ, Liu XY (2012) A novel non-enzymatic glucose sensor based on Cu nanoparticle modified graphene sheets electrode. Anal Chim Acta 709:47–53

    CAS  Article  Google Scholar 

  176. Zhang Y, Xu FG, Sun YJ, Shi Y, Wen ZW, Li Z (2011) Assembly of Ni(OH)2 nanoplates on reduced graphene oxide: a two dimensional nanocomposite for enzyme-free glucose sensing. J Mater Chem 21:16949–16954

    CAS  Article  Google Scholar 

  177. Sun JY, Huang KJ, Fan Y, Wu ZW, Li DD (2011) Glassy carbon electrode modified with a film composed of Ni(II), quercetin and graphene for enzyme-less sensing of glucose. Microchim Acta 174:289–294

    CAS  Article  Google Scholar 

  178. Kong FY, Li XR, Zhao WW, Xu JJ, Chen HY (2012) Graphene oxide-thionine-Au nanostructure composites: preparation and applications in non-enzymatic glucose sensing. Electrochem Commun 14:59–62

    CAS  Article  Google Scholar 

  179. Lu LM, Li HB, Qu FL, Zhang XB, Shen GL, Yu RQ (2011) In situ synthesis of palladium nanoparticle–graphene nanohybrids and their application in nonenzymatic glucose biosensors. Biosens Bioeletron 26:3500–3504

    CAS  Article  Google Scholar 

  180. Gao HC, Xiao F, Ching CB, Duan HW (2011) One-step electrochemical synthesis of PtNi nanoparticle-graphene nanocomposites for nonenzymatic amperometric glucose detection. ACS Appl Mater Interfaces 3:3049–3057

    CAS  Article  Google Scholar 

  181. Ding RM, Jiang J, Wu F, Gong M, Zhu JH, Huang XT (2011) Cu@C composite nanotube array and its application as an enzyme-free glucose sensor. Nanotechnology 22:1–7

    Google Scholar 

  182. Ni YH, Jin L, Zhang L, Hong JM (2010) Honeycomb-like Ni@C composite nanostructures: synthesis, properties and applications in the detection of glucose and the removal of heavy-metal ions. J Mater Chem 20:6430–6436

    CAS  Article  Google Scholar 

  183. Zhong X, Yuan R, Chai YQ (2012) In situ spontaneous reduction synthesis of spherical Pd@Cys-C60 nanoparticles and its application in nonenzymatic glucose biosensors. Chem Commun 48:597–599

    CAS  Article  Google Scholar 

  184. Singh BJ, Dempsey E, Dickinson C, Laffir F (2012) Inside/outside Pt nanoparticles decoration of functionalised carbon nanofibers (Pt19.2/f-CNF80.8) for sensitive non-enzymatic electrochemical glucose detection. Analyst 137:1639–1648

    CAS  Article  Google Scholar 

  185. Bo XJ, Ndamanisha JC, Bai J, Guo LP (2010) Nonenzymatic amperometric sensor of hydrogen peroxide and glucose based on Pt nanoparticles/ordered mesoporous carbon nanocomposite. Talanta 82:85–91

    CAS  Article  Google Scholar 

  186. Su C, Zhang C, Lu GQ, Ma CN (2010) Nonenzymatic electrochemical glucose sensor based on Pt nanoparticles/mesoporous carbon matrix. Electroanalysis 22:1901–1905

    CAS  Article  Google Scholar 

  187. Li X, Hu AZ, Jiang J, Ding RM, Liu JP, Huang XT (2011) Preparation of nickel oxide and carbon nanosheet array and its application in glucose sensing. J Solid State Chem 184:2738–2743

    CAS  Article  Google Scholar 

  188. Colon LA, Dadoo R, Zare RN (1993) Determination of carbohydrates by capillary zone electrophoresis with amperometric detection at a copper microelectrode. Anal Chem 65:476–481

    CAS  Article  Google Scholar 

  189. Luo PF, Prabhu SV, Baldwin RP (1990) Constant potential amperometric detection at a copper-based electrode: electrode formation and operation. Anal Chem 62:752–755

    CAS  Article  Google Scholar 

  190. Pang H, Lu QY, Wang JJ, Li YC, Gao F (2010) Glucose-assisted synthesis of copper micropuzzles and their application as nonenzymatic glucose sensors. Chem Commun 46:2010–2012

    CAS  Article  Google Scholar 

  191. Batchelor-McAuley C, Wildgoose GG, Compton RG, Shao LD, Green MLH (2008) Copper oxide nanoparticle impurities are responsible for the electroanalytical detection of glucose seen using multiwalled carbon nanotubes. Sens Actuators B 132:356–360

    Article  CAS  Google Scholar 

  192. Hua L, Chia LS, Goh NK, Tan SN (2000) Amperometric detection of carbohydrates by capillary electrophoresis with a cuprous oxide modified sol–gel carbon composite electrode. Electroanalysis 12:287–291

    CAS  Article  Google Scholar 

  193. Ding Y, Liu YX, Parisi J, Zhang LC, Lei Y (2011) A novel NiO–Au hybrid nanobelts based sensor for sensitive and selective glucose detection. Biosens Bioeletron 28:393–398

    CAS  Article  Google Scholar 

  194. Wang GF, Wei Y, Zhang W, Zhang XJ, Fang B, Wang L (2010) Enzyme-free amperometric sensing of glucose using Cu-CuO nanowire composites. Microchim Acta 168:87–92

    CAS  Article  Google Scholar 

  195. Zhang XJ, Gu AX, Wang GF, Wei Y, Wang W, Wu HQ, Fang B (2010) Fabrication of CuO nanowalls on Cu substrate for a high performance enzyme-free glucose sensor. CrystEngComm 12:1120–1126

    CAS  Article  Google Scholar 

  196. Ding Y, Liu YX, Zhang LC, Wang Y, Bellagamba M, Parisi J, Li CM (2011) Sensitive and selective nonenzymatic glucose detection using functional NiO–Pt hybrid nanofibers. Electrochim Acta 58:209–214

    CAS  Article  Google Scholar 

  197. Fang B, Gu AX, Wang GF, Wang W, Feng YH, Zhang CH, Zhang XJ (2009) Silver oxide nanowalls grown on cu substrate as an enzymeless glucose sensor. ACS Appl Mater Interfac 1:2829–2834

    CAS  Article  Google Scholar 

  198. Wang AJ, Feng JJ, Li ZH, Liao QC, Wang ZZ, Chen JR (2012) Solvothermal synthesis of Cu/Cu2O hollow microspheres for non-enzymatic amperometric glucose sensing. CrystEngComm 14:1289–1295

    CAS  Article  Google Scholar 

  199. Wang CX, Yin LW, Zhang LY, Gao R (2010) Ti/TiO2 nanotube array/Ni composite electrodes for nonenzymatic amperometric glucose sensing. J Phys Chem C 114:4408–4413

    CAS  Article  Google Scholar 

  200. Casella G, Guascito MR, Cataldi TRI (1999) Electrocatalysis and amperometric detection of alditols and sugars at a gold-nickel composite electrode in anion-exchange chromatography. Anal Chim Acta 398:153–160

    CAS  Article  Google Scholar 

  201. Wang J, Zhang WD (2011) Fabrication of CuO nanoplatelets for highly sensitive enzyme-free determination of glucose. Electrochim Acta 56:7510–7516

    CAS  Article  Google Scholar 

  202. Illaik A, Taviot-Gueho C, Lavis J, Commereuc S, Verney V, Leroux F (2008) Unusual polystyrene nanocomposite structure using emulsifier-modified layered double hydroxide as nanofiller. Chem Mater 20:4854–4860

    CAS  Article  Google Scholar 

  203. Uan JY, Lin JK, Yung YS (2010) Direct growth of oriented Mg–Al layered double hydroxide film on Mg alloy in aqueous HCO3 /CO3 2− solution. J Mater Chem 20:761–766

    CAS  Article  Google Scholar 

  204. Fogg AM, Green VM, Harvey HG, O’Hare D (1999) New separation science using shape-selective ion exchange intercalation chemistry. Adv Mater 11:1466–1469

    CAS  Article  Google Scholar 

  205. Shi W, He S, Wei M, Evans DG, Duan X (2010) Optical pH sensor with rapid response based on a fluorescein–intercalated layered double hydroxide. Adv Funct Mater 20:3856–3863

    CAS  Article  Google Scholar 

  206. Scavetta E, Stipa S, Tonelli D (2007) Electrodeposition of a nickel-based hydrotalcite on Pt nanoparticles for ethanol and glucose sensing. Electrochem Commun 9:2838–2842

    CAS  Article  Google Scholar 

  207. Fogg AM, Dunn JS, Shyu SG, Cary DR, O’Hare D (1998) Selective ion-exchange intercalation of isomeric dicarboxylate anions into the layered double hydroxide [LiAl2(OH)6]Cl H2O. Chem Mater 10:351–355

    CAS  Article  Google Scholar 

  208. Zhao Y, Wei M, Lu J, Wang ZL, Duan X (2009) Biotemplated hierarchical nanostructure of layered double hydroxides with improved photocatalysis performance. ACS Nano 3:4009–4016

    CAS  Article  Google Scholar 

  209. Yan D, Lu J, Ma J, Wei M, Evans DG, Duan X (2011) Reversibly thermochromic, fluorescent ultrathin films with a supramolecular architecture. Angew Chem Int Ed 50:720–723

    CAS  Article  Google Scholar 

  210. Ai HH, Huang XT, Zhu ZH, Liu JP, Chi QB, Li YY (2008) A novel glucose sensor based on monodispersed Ni/Al layered double hydroxide and chitosan. Biosens Bioeletron 24:1048–1052

    CAS  Article  Google Scholar 

  211. Li MG, Xu SD, Ni F, Wang YL, Chen SH, Wang L (2009) Fast and sensitive non-enzymatic glucose concentration determination using an electroactive anionic clay-modified electrode. Microchim Acta 166:203–208

    CAS  Article  Google Scholar 

  212. Li X, Liu JP, Ji XX, Jiang J, Ding RM, Hu YY, Hu AZ, Huang XT (2010) Ni/Al layered double hydroxide nanosheet film grown directly on Ti substrate and its application for a nonenzymatic glucose sensor. Sens Actuators B 147:241–247

    Article  CAS  Google Scholar 

  213. Zhao JW, Kong XG, Shi WY, Shao MF, Han JB, Wei M, Evans DG, Duan X (2011) Self-assembly of layered double hydroxide nanosheets/Au nanoparticles ultrathin films for enzyme-free electrocatalysis of glucose. J Mater Chem 21:13926–13933

    CAS  Article  Google Scholar 

  214. Luo J, Zhang HY, Jiang SS, Jiang JQ, Liu XY (2012) Facile one-step electrochemical fabrication of a non-enzymatic glucose-selective glassy carbon electrode modified with copper nanoparticles and graphene. Microchim Acta 177:485–490

    CAS  Article  Google Scholar 

  215. Lv W, Jin FM, Guo QG, Yang QH, Kang FY (2012) DNA-dispersed graphene/NiO hybrid materials for highly sensitive non-enzymatic glucose sensor. Electrochim Acta 73:129–135

    CAS  Article  Google Scholar 

  216. Zhou XM, Nie HG, Yao Z, Dong YQ, Yang Z, Huang SM (2012) Facile synthesis of nanospindle-like Cu2O/straight multi-walled carbon nanotube hybrid nanostructures and their application in enzyme-free glucose sensing. Sens Actuators B 168:1–7

    CAS  Article  Google Scholar 

  217. Zhao Y, Zhao JZ, Ma DC, Li YL, Hao XL, Li LZ, Yu CZ, Zhang L, Lu Y, Wang ZC (2012) Synthesis, growth mechanism of different Cu nanostructures and their application for non-enzymatic glucose sensing. Colloid Surface A 409:105–111

    CAS  Article  Google Scholar 

  218. Zhang XJ, Wang LL, Ji R, Yu LT, Wang GF (2012) Nonenzymatic glucose sensor based on Cu–Cu2S nanocomposite electrode. Electrochem Comm 24:53–56

    Article  CAS  Google Scholar 

  219. Shi HY, Zhang ZX, Wang Y, Zhu QY, Song WB (2011) Bimetallic nano-structured glucose sensing electrode composed of copper atoms deposited on gold nanoparticles. Microchim Acta 173:85–94

    Google Scholar 

  220. Zhang WD, Chen J, Jiang LC, Yu YX, Zhang JQ (2010) A highly sensitive nonenzymatic glucose sensor based on NiO-modified multi-walled carbon nanotubes. Microchim Acta 168:259–265

    Google Scholar 

  221. Qiao NQ, Zheng JB (2012) Nonenzymatic glucose sensor based on glassy carbon electrode modified with a nanocomposite composed of nickel hydroxide and graphene. Microchim Acta 177:103-109

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (20901003, 20971003, 21073001 and 21005001), the Key Project of the Chinese Ministry of Education (209060), Anhui Provincial Natural Science Foundation (1208085QB28), Natural Science Foundation of Anhui (KJ2012A139) and the Program for Innovative Research Team at Anhui Normal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojun Zhang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wang, G., He, X., Wang, L. et al. Non-enzymatic electrochemical sensing of glucose. Microchim Acta 180, 161–186 (2013). https://doi.org/10.1007/s00604-012-0923-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-012-0923-1

Keywords

  • Non-enzymatic
  • Glucose
  • Electrochemical sensors