Skip to main content
Log in

Colloidal silica beads modified with quantum dots and zinc (II) tetraphenylporphyrin for colorimetric sensing of ammonia

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Colloidal crystal beads (CCBs) were fabricated by assembling monodisperse silica nanoparticles via a microfluidic device. The pore size of the CCBs was tuned by using different nanoparticles. The CCBs were then coated with cadmium telluride quantum dots and zinc(II) meso-tetraphenylporphyrin for the purpose of optical sensing. Ammonia causes the color of the sensor to change from green to red. The method has a dynamic range of 0–2500 ppm, good reversibility, and is not sensitive to humidity. The limit of detection is 7 ppm. The sensor has the advantage of a porous microcarrier structure and that pore sizes can be well controlled and thus can fulfill various demands in gas detection.

Figure SEM images of colloidal silica beads with different modified CCBs for colorimetric sensing of ammonia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Timmer B, Olthuis W, van den Berg AA (2005) Ammonia sensors and their applications-a review. Sens Actuators B 107:666–677

    Article  Google Scholar 

  2. Mills A, Wild L, Chang Q (1995) Plastic colorimetric film sensors for gaseous ammonia. Mikrochim Acta 121:225–236

    Article  CAS  Google Scholar 

  3. Courbat J, Briand D, Damon-Lacoste J, Wöllenstein J, Rooij NF (2009) Evaluation of pH indicator-based colorimetric films for ammonia detection using optical waveguides. Sens Actuators B 143:62–70

    Article  Google Scholar 

  4. Schmitt K, Rist J, Peter C, Woellenstein J (2012) Low-cost fiber-optic waveguide sensor for the colorimetric detection of ammonia. Microsyst Technol 18:843–848

    Article  CAS  Google Scholar 

  5. Caglar P, Narayanaswamy R (1987) Ammonia-sensitive Fibre Optic Probe Utilising an lmmobilised Spectrophotometric Indicator. Analyst 112:1285–1288

    Article  CAS  Google Scholar 

  6. Trinkel M, Trettnak W, Reininger F, Benes R, Oleary P, Wolfbeis OS (1997) Optochemical sensor for ammonia based on a lipophilized pH indicator in a hydrophobic matrix. Int J Environ An Ch 67:237–251

    Article  CAS  Google Scholar 

  7. Werner T, Klimant I, Wolfbeis OS (1995) Ammonia-sensitive polymer matrix employing immobilized indicator ion pairs. Analyst 120:1627–1631

    Article  CAS  Google Scholar 

  8. Preininger C, Mohra GJ, Klimanta I, Wolfbeisa OS (1996) Ammonia fluorosensors based on reversible lactonization of polymer-entrapped rhodamine dyes, and the effects of plasticizers. Anl Chim Acta 334:113–123

    Article  CAS  Google Scholar 

  9. Lobnik A, Wolfbeis OS (1998) Sol–gel based optical sensor for dissolved ammonia. Sens Actuators B 51:203–207

    Article  Google Scholar 

  10. Mader HS, Wolfbeis OS (2010) Optical ammonia sensor based on upconverting luminescent nanoparticles. Anal Chem 82:5002–5004

    Article  CAS  Google Scholar 

  11. DiNatale C, Paolesse R, D’Amico A (2007) Metalloporphyrins based artificial olfactory receptors. Sens Actuators B 121:238–246

    Article  Google Scholar 

  12. Rakow NA, Suslick KS (2000) A colorimetric sensor array for odour visualization. Nature 406:710–713

    Article  CAS  Google Scholar 

  13. Vaughan AA, Baronb MG, Narayanaswamy R (1996) Optical ammonia sensing films based on an immobilized metalloporphyrin. Anal Commun l33:393–396

    Article  Google Scholar 

  14. Morales-Bahnik A, Czolk R, Ache HJ (1994) An optochemical ammonia sensor based on immobilized metalloporphyrins. Sens Actuators B 18–19:493–496

    Article  Google Scholar 

  15. Nwachukwu FA, Baron MG (2003) Polymeric matrices for immobilising zinc tetraphenylporphyrin in absorbance based gas sensors. Sens Actuators B 90:276–285

    Article  Google Scholar 

  16. Delmarre D, Bied-Charreton C (2000) Grafting of cobalt porphyrins in sol–gel matrices: application to the detection of amines. Sens Actuators B 62:136–142

    Article  Google Scholar 

  17. Wang XD, Chen X, Xie ZX, Wang XR (2008) Reversible optical sensor strip for oxygen. Angew Chem Int Ed 47:7450–7453

    Article  CAS  Google Scholar 

  18. Tonezzer M, Maggioni G, Dalcanale E (2012) Production of novel microporous porphyrin materials with superior sensing capabilities. J Mater Chem 22:5647–5655

    Article  CAS  Google Scholar 

  19. Çaycı D, Stanciu SG, Çapan İ, Erdoğan M, Güner B, Hristu R, Stanciu GA (2011) The influence of the surface morphologies of Langmuir Blodgett (LB) thin films of porphyrins on their gas sensing properties. Sens Actuators B 158:62–68

    Article  Google Scholar 

  20. Melde BJ, Johnson BJ (2010) Mesoporous materials in sensing: morphology and functionality at the meso-interface. Anal Bioanal Chem 398:1565–1573

    Article  CAS  Google Scholar 

  21. Tao SY, Li GT, Yin JX (2007) Fluorescent nanofibrous membranes for trace detection of TNT vapor. J Mater Chem 17:2730–2736

    Article  CAS  Google Scholar 

  22. Yang YF, Wang HM, Su K, Long YY, Peng Z, Li N, Liu F (2011) A facile and sensitive fluorescent sensor using electrospun nanofibrous film for nitroaromatic explosive detection. J Mater Chem 21:11895–11900

    Article  CAS  Google Scholar 

  23. Lv YY, Wu J, Xu ZK (2010) Colorimetric and fluorescent sensor constructing from the nanofibrous membrane of porphyrinated polyimide for the detection of hydrogen chloride gas. Sens Actuators B 148:233–239

    Article  Google Scholar 

  24. Penza M, Rossi R, Alvisi M, Signore MA, Serra E, Paolesse R, D’Amico A (2010) A Metalloporphyrins-modified carbon nanotubes networked films-based chemical sensors for enhanced gas sensitivity. Sens Actuators B 144:387–394

    Article  Google Scholar 

  25. Shirsat MD, Sarkar T, Kakoullis J, Myung NV, Konnanath B, Spanias A (2012) Porphyrin-functionalized single-walled carbon nanotube chemiresistive sensor arrays for VOCs. J Phy Chem 116:3845–3850

    CAS  Google Scholar 

  26. Penza M, Rossi R, Alvisi M, Valerini D, Serra E, Paolesse R, Martinelli E, D’Amico A (2011) Metalloporphyrin-modified carbon nanotube layers for gas microsensors. Sens Lett 9:913–919

    Article  CAS  Google Scholar 

  27. Berrier A, Offermans P, Cools R, van Megen B, Knoben W, Vecchi G, Rivas JG, Crego-Calama M, Brongersma SH (2011) Enhancing the gas sensitivity of surface plasmon resonance with a nanoporous silica matrix. Sens Actuators B 160:181–188

    Article  CAS  Google Scholar 

  28. Johnson-White B, Zeinali M, Shaffer KM, Patterson CH, Charles PT, Markowitz MA (2007) Detection of organics using porphyrin embedded nanoporous organosilicas. Biosens Bioelectron 22:1154–1162

    Article  CAS  Google Scholar 

  29. Amao Y (2003) Probes and polymers for optical sensing of oxygen. Microchim Acta 143:1–12

    Article  CAS  Google Scholar 

  30. Lim SH, Kemling JW, Feng L, Suslick KS (2009) A colorimetric sensor array of porous pigments. Analyst 134:2453–2457

    Article  CAS  Google Scholar 

  31. Tiemann M (2007) Porous metal oxides as gas sensors. Chem Eur J 13:8376–8388

    Article  CAS  Google Scholar 

  32. Zhao XW, Cao Y, Fuyumi I, Chen HH, Nagai K, Zhao YH, Gu ZZ (2006) Colloidal crystal beads as supports for biomolecular screening. Angew Chem Int Ed 45:6835–6838

    Article  CAS  Google Scholar 

  33. Zhao YJ, Zhao XW, Sun C, Li J, Zhu R, Gu ZZ (2008) Encoded silica colloidal crystal beads as supports for potential multiplex immunoassay. Anal Chem 80:1598–1605

    Article  CAS  Google Scholar 

  34. Zhao YJ, Zhao XW, Gu ZZ (2010) Photonic crystals in bioassays. Adv Funct Mater 20:2970–2988

    Article  CAS  Google Scholar 

  35. Xu H, Zhu C, Zhao YJ, Zhao XW, Hu J, Gu ZZ (2009) Colloidal crystal beads composed of core-shell particles for multiplex bioassay. J Nanosci Nanotechnol 9:2586–2591

    Article  CAS  Google Scholar 

  36. Yu WW, Qu LH, Guo WZ, Peng XG (2003) Experimental Determination of the Extinction Coefficient of CdTe, CdSe, and CdS Nanocrystals. Chem Mater 15:2854–2860

    Article  CAS  Google Scholar 

  37. Xu H, Zheng JY (2010) Face-to-face alignment of porphyrin/fullerene nanowires linked by axial metal coordination. Macromol Chem Phys 211:2125–2131

    Article  CAS  Google Scholar 

  38. Xu H, Zhu YZ, Zheng JY (2007) Synthesis of a series of meso-substituted zinc porphyrin derivatives and their assembly dyad with fulleropyrrolidine. Supramol Chem 19:365–372

    Article  Google Scholar 

  39. Stober W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26:62–69

    Article  Google Scholar 

  40. O’Brien FEM (1948) The Control of Humidity by Saturated Salt Solutions. J Sci Instrum 25:73–76

    Article  Google Scholar 

  41. Lin ZJ, Chen XM, Jia TT, Wang XD, Xie ZX, Oyama M (2009) Fabrication of a colorimetric electrochemiluminescence sensor. Anal Chem 81:830–833

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NSFC (Grant No. 21103020, 50925309) and the Suzhou Science and Technology Department (Grant No. SYG201209, SH201110).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Xu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 50 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, H., Zhang, M., Ding, H. et al. Colloidal silica beads modified with quantum dots and zinc (II) tetraphenylporphyrin for colorimetric sensing of ammonia. Microchim Acta 180, 85–91 (2013). https://doi.org/10.1007/s00604-012-0914-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-012-0914-2

Keywords

Navigation