Skip to main content
Log in

Determination of microcystin-LR with a glassy carbon impedimetric immunoelectrode modified with an ionic liquid and multiwalled carbon nanotubes

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We report on a sensitive, simple, label-free impedance-based immunoelectrode for the determination of microcystin-LR (MCLR). The surface of the electrode was modified with a composite made from multiwalled carbon nanotubes and an ionic liquid, and with immobilized polyclonal antibody against MCLR. Cyclic voltammetry and impedance spectroscopy were applied to characterize the modified electrode. It is found that the multi-walled carbon nanotubes act as excellent mediators for the electron transfer between the electrode and dissolved hexacyanoferrate redox pair, while the ionic liquid renders it biocompatible. The method exhibits a wide linear range (0.005 μg•L-1 to 1.0 μg•L-1), a low detection limit (1.7 ng•L-1) and a long-term stability of around 60 days. The ionic liquid 1-amyl-2,3-dimethylimidazolium hexafluorophosphate gave the best impedimetric response. The new immunoelectrode is sensitive, stable, and easily prepared. It has been successfully applied to the determination of MCLR in water samples.

The immunosensor, modified with a nanocomposite of room temperature ionic liquid- multiwalled carbon nanotube, was applied to detect MCLR. The method exhibits a wide linear range (0.005 μg·L−1 to 1.0 μg·L−1), a low detection limit (1.7 ng·L-1) and a long-term stability of around 60 days.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Dawson RM (1998) The toxicology of microcystins. Toxicon 36:953–962

    Article  CAS  Google Scholar 

  2. Žegura B, Sedmak B, Filipič M (2003) Microcystin-LR induces oxidative DNA damage in human hepatoma cell line HepG2. Toxicon 41:41–48

    Article  Google Scholar 

  3. Gupta N, Pant SC, Vijayaraghavan R, Rao PVL (2003) Comparative toxicity evaluation of cyanobacterial cyclic peptide toxin microcystin variants (LR, RR, YR) in mice. Toxicology 188:285–296

    Article  CAS  Google Scholar 

  4. McElhiney J, Lawton LA (2005) Detection of the cyanobacterial hepatotoxins microcystins. Toxicol Appl Pharm 203:219–230

    Article  CAS  Google Scholar 

  5. Pumera M, Merkoçi A, Alegret S (2006) Carbon nanotube-epoxy composites for electrochemical sensing. Sensors Actuators B: Chem 113:617–622

    Article  Google Scholar 

  6. Xu ZA, Chen X, Qu XH, Dong SJ (2004) Electrocatalytic oxidation of catechol at multi-walled carbon nanotubes modified electrode. Electroanal 16:684–687

    Article  CAS  Google Scholar 

  7. WHO (2004) Guidelines for drinking water quality, 3rd edn. World Health Organization, Geneva

    Google Scholar 

  8. Mountfort DO, Holland P, Sprosen J (2005) Method for detecting classes of microcystins by combination of protein phosphatase inhibition assay and ELISA: comparison with LC-MS. Toxicon 45:199–206

    Article  CAS  Google Scholar 

  9. Herranz S, Bocková M, Marazuela MD, Homola J, Moreno-Bondi MC (2010) An SPR biosensor for the detection of microcystins in drinking water. Anal Bioanal Chem 398:2625–2634

    Article  CAS  Google Scholar 

  10. Loyprasert S, Thavarungkul P, Asawatreratanakul P, Wongkittisuksa B, Limsakul C, Kanatharana P (2008) Label-free capacitive immunosensor for microcystin-LR using self-assembled thiourea monolayer incorporated with Ag nanoparticles on gold electrode. Biosens Bioelectron 24:78–86

    Article  CAS  Google Scholar 

  11. Chu FS, Huang X, Wei RD (1990) Enzyme-linked immunosorbent assay for microcystins in blue-green algal blooms. J Assoc Off Anal Chem 73:451–457

    CAS  Google Scholar 

  12. Khreich N, Lamourette P, Renard PY, Clavé G, Fenaille F, Créminon C, Volland H (2009) A highly sensitive competitive enzyme immunoassay of broad specificity quantifying microcystins and nodularins in water samples. Toxicon 53:551–559

    Article  CAS  Google Scholar 

  13. Liu Y, Zhang D, Alocilja EC, Chakrabartty S (2010) Biomolecules detection using a silver-enhanced gold nanoparticle-based biochip. Nanoscale Res Lett 5:533–538

    Article  CAS  Google Scholar 

  14. Rubianes MD, Rivas GA (2003) Carbon nanotubes paste electrode. Electrochem Commun 5:689–694

    Article  CAS  Google Scholar 

  15. Chen PH, McCreery RL (1996) Control of electron transfer kinetics at glassy carbon electrodes by specific surface modification. Anal Chem 68:3958–3965

    Article  CAS  Google Scholar 

  16. Sassolas A, Catanante G, Fournier D, Marty JL (2011) Development of a colorimetric inhibition assay for microcystin-LR detection: comparison of the sensitivity of different protein phosphatases. Talanta 85:2498–2503

    Article  CAS  Google Scholar 

  17. Han JH, Zhang JP, Xia YT, Jiang L (2011) Highly sensitive detection of the hepatotoxin microcystin-LR by surface modification and bio-nanotechnology. Colloid Surf A-Physicochem Eng Asp 391:184–189

    Article  CAS  Google Scholar 

  18. Barzen C, Brecht A, Gauglitz G (2002) Optical multiple-analyte immunosensor for water pollution control. Biosens Bioelectron 17:289–295

    Article  CAS  Google Scholar 

  19. Long F, He M, Zhu AN, Shi HC (2009) Portable optical immunosensor for highly sensitive detection of microcystin-LR in water samples. Biosens Bioelectron 24:2346–2351

    Article  CAS  Google Scholar 

  20. Talaty ER, Raja S, Storhaug VJ, Dölle A, Carper WR (2004) Raman and infrared spectra and ab initio calculations of C2-4MIM imidazolium hexafluorophosphate ionic liquids. J Phys Chem B 108:13177–13184

    Article  CAS  Google Scholar 

  21. Zhang J, Lei JP, Xu CL, Ding L, Ju HX (2010) Carbon nanohorn sensitized electrochemical immunosensor for rapid detection of microcystin-LR. Anal Chem 82:1117–1122

    Article  CAS  Google Scholar 

  22. Cleuziou JP, Wernsdorfer W, Ondarçuhu T, Monthioux M (2011) Electrical detection of individual magnetic nanoparticles encapsulated in carbon nanotubes. ACS Nano 5:2348–2355

    Article  CAS  Google Scholar 

  23. Shi F, Deng YQ (2005) Abnormal FT-IR and FTRaman spectra of ionic liquids confined in nano-porous silica gel. Spectrochim Acta A 62:239–244

    Article  Google Scholar 

  24. Shervedani RK, Bagherzadeh M (2009) Electrochemical impedance spectroscopy as a transduction method for electrochemical recognition of zirconium on gold electrode modified with hydroxamated self-assembled monolayer. Sensor Actuat B- Chem 139:657–664

    Article  Google Scholar 

  25. Briza PL, Arben M (2012) Carbon nanotubes and graphene in analytical sciences. Microchim Acta 179:1–16

    Article  Google Scholar 

  26. Du P, Liu SN, Wu P, Cai CX (2007) Single-walled carbon nanotubes functionalized with poly(Nile blue a) and their application to dehydrogenase-based biosensors. Electrochim Acta 53:1811–1823

    Article  CAS  Google Scholar 

  27. Saini RK, Chiang IW, Peng HP, Smalley RE, Billups WE, Hauge RH, Margrave JL (2003) Covalent sidewall functionalization of single wall carbon nanotubes. J Am Chem Soc 125:3617–3621

    Article  CAS  Google Scholar 

  28. Ding SF, Xu MQ, Zhao GC, Wei XW (2007) Direct electrochemical response of myoglobin using a room temperature ionic liquid, 1-(2-hydroxyethyl)-3-methyl imidazolium tetrafluoroborate, as supporting electrolyte. Electrochem Commun 9:216–220

    Article  CAS  Google Scholar 

  29. Wei D, Kvarnström C, Lindfors T, Ivaska A (2007) Electrochemical functionalization of single walled carbon nanotubes with polyaniline in ionic liquids. Electrochem Commun 9:206–210

    Article  CAS  Google Scholar 

  30. Laszlo JA, Compton DL (2002) Comparison of peroxidase activities of hemin, cytochrome c and microperoxidase-11 in molecular solvents and imidazolium-based ionic liquids. J Mol Catal B-Enzym 18:109–120

    Article  CAS  Google Scholar 

  31. Dossi N, Toniolo R, Pizzariello A, Carrilho E, Piccin E, Battiston S, Bontempelli G (2012) An electrochemical gas sensor based on paper supported room temperature ionic liquids. Lab Chip 12:153–158

    Article  CAS  Google Scholar 

  32. Li ZJ, Wang ZY, Sun XL, Fang YJ, Chen PP (2010) A sensitive and highly stable electrochemical impedance immunosensor based on the formation of silica gel–ionic liquid biocompatible film on the glassy carbon electrode for the determination of aflatoxin B1 in bee pollen. Talanta 80:1632–1637

    Article  CAS  Google Scholar 

  33. Tao WY, Pan DW, Liu Q, Yao SZ, Nie Z, Han BX (2006) Optical and bioelectrochemical characterization of water-miscible ionic liquids based composites of multiwalled carbon nanotubes. Electroanal 18:1681–1688

    Article  CAS  Google Scholar 

  34. Woody RW (2009) Circular dichroism spectrum of peptides in the poly(pro)II conformation. J Am Chem Soc 131:8234–8245

    Article  CAS  Google Scholar 

  35. Xia Y, Zhang J, Jiang L (2011) A novel dendritic surfactant for enhanced microcystin-LR detection by double amplification in a quartz crystal microbalance biosensor. Colloids and Surfaces B: Biointerfaces 86:81–86

    Article  CAS  Google Scholar 

  36. Wei Q, Zhao Y, Du B, Wu D, Cai Y, Mao K, Li H, Xu C (2011) Nanoporous PtRu alloy enhanced nonenzymatic immunosensor for ultrasensitive detection of microcystin-LR. Adv Funct Mater 21:4193–4198

    Article  CAS  Google Scholar 

  37. Queirós RB, Silva SO, Noronha JP, Frazão O, Jorge P, Aguilar G, Marques PVS, Sales MGF (2011) Microcystin-LR detection in water by the fabry–pérot interferometer using an optical fibre coated with a sol–gel imprinted sensing membrane. Biosens Bioelectron 26:3932–3937

    Article  Google Scholar 

  38. Tian J, Zhao H, Zhao H, Quan X (2012) Photoelectrochemical immunoassay for microcystin-LR based on a fluorine-doped tin oxide glass electrode modified with a CdS-graphene composite. Microchim Acta 179:163–170

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by the “973” National Basic Research Program of China (No. 2012CB720804), National research program (No. 2011BAK10B03, No. 201203069–1/No. 201003008-08-03), and Fundamental Research Funds for the Central Universities, (JUSRP21101.)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiulan Sun.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 181 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, X., Guan, L., Shi, H. et al. Determination of microcystin-LR with a glassy carbon impedimetric immunoelectrode modified with an ionic liquid and multiwalled carbon nanotubes. Microchim Acta 180, 75–83 (2013). https://doi.org/10.1007/s00604-012-0912-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-012-0912-4

Keywords

Navigation