Skip to main content

Advertisement

Log in

Direct electrodeposition of a biocomposite consisting of reduced graphene oxide, chitosan and glucose oxidase on a glassy carbon electrode for direct sensing of glucose

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We have electrodeposited a composite film consisting of graphene oxide, chitosan and glucose oxidase directly on a glassy carbon electrode (GCE) through electrochemical reduction of a solution of the 3 components under controlled direct electrical potential. The procedure takes only several minutes, and the thickness of the resulting film is uniform and controllable. The GOx has uncompromised bioactivity and exhibits reversible 2-proton and 2-electron transfer in presence of glucose. It therefore can be used amperometric sensing of glucose. The biosensor has a fast response (<3 s), a detection limit of 0.4 μM (which is 50-fold lower compared to the biosensor prepared by drop-casting solutions of the same materials onto an GCE), and a linear response in the 0.4 μM to 2 mM concentration range (which again is much better than that of the biosensor prepared by the drop-casting method). Other features include high reproducibility, long-time storage stability, and satisfactory selectivity. We presume that the direct single-step electrodeposition of this nanocomposite offers a promising approach towards novel types of highly sensitive and stable electrochemical biosensors.

We describe a fast and easy way for the fabrication of graphene-chitosan-GOx film by one-step electrodeposition under controlled potential. The direct electron transfer reaction of GOx immobilized on graphene-chitosan hybrids is observed, and therefore can be used for amperometric sensing of glucose. The biosensor shows a fast response (<3 s), a detection limit of 0.4 μM, and a linear response in the 0.4 μM to 2 mM concentration range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4

Similar content being viewed by others

References

  1. Pei J, Tian F, Thundat T (2004) Glucose biosensor based on the microcantilever. Anal Chem 76:292

    Article  CAS  Google Scholar 

  2. Center for Disease Control (Ministry of Health, China http://www.eds.org.cn/), 2005. Guideline for Management of Chinese Diabetes

  3. Ahmad M, Pan CF, Luo ZX, Zhu J (2010) A single ZnO nanofiber-based highly sensitive amperometric glucose biosensor. J Phys Chem C 114:9308

    Article  CAS  Google Scholar 

  4. Kang XH, Wang J, Wu H, Aksay IA, Liu J, Lin YH (2009) Glucose oxidase–graphene–chitosan modified electrode for direct electrochemistry and glucose sensing. Biosens Bioelectron 25:901

    Article  CAS  Google Scholar 

  5. Liu XY, Zeng XD, Mai NN, Liu Y, Kong B, Li YH, Wei WZ, Luo SL (2010) Amperometric glucose biosensor with remarkable acid stability based on glucose oxidase entrapped in colloidal gold-modified carbon ionic liquid electrode. Biosens Bioelectron 25:2675

    Article  CAS  Google Scholar 

  6. Shan CS, Yang HF, Song JF, Han DX, Ivaska A, Niu L (2009) Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene. Anal Chem 81:2378

    Article  CAS  Google Scholar 

  7. Dai ZH, Ni J, Huang XH, Lu GF, Bao JC (2007) Direct electrochemistry of glucose oxidase immobilized on a hexagonal mesoporous silica-MCM-41 matrix. Bioelectrochemistry 70:250

    Article  CAS  Google Scholar 

  8. Huang YX, Zhang WJ, Xiao H, Li GX (2005) An electrochemical investigation of glucose oxidase at a CdS nanoparticles modified electrode. Biosens Bioelectron 21:817

    Article  CAS  Google Scholar 

  9. Liu Y, Wang MK, Zhao F, Xu ZA, Dong SJ (2005) The direct electron transfer of glucose oxidase and glucose biosensor based on carbon nanotubes/chitosan matrix. Biosens Bioelectron 21:984

    Article  CAS  Google Scholar 

  10. Pulcu GS, Elmore BL, Arciero DM, Hooper AB, Elliott SJ (2007) Direct electrochemistry of tetraheme cytochrome c554 from nitrosomonas europaea: redox cooperativity and gating. J Am Chem Soc 129:1838

    Article  CAS  Google Scholar 

  11. Zeng XD, Li XF, Liu XY, Liu Y, Luo SL, Kong B, Yang SL, Wei WZ (2009) A third-generation hydrogen peroxide biosensor based on horseradish peroxidase immobilized on DNA functionalized carbon nanotubes. Biosens Bioelectron 25:896

    Article  CAS  Google Scholar 

  12. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666

    Article  CAS  Google Scholar 

  13. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183

    Article  CAS  Google Scholar 

  14. Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442:282

    Article  CAS  Google Scholar 

  15. Ramanathan T, Abdala AA, Stankovich S, Dikin DA, Herrera-Alonso M, Piner RD (2008) Functionalized graphene sheets for polymer nanocomposites. Nature Nanotech 3:327

    Article  CAS  Google Scholar 

  16. Pérez-López B, Merkoçi A (2012) Carbon nanotubes and graphene in analytical sciences. Microchim Acta 179:1

    Article  Google Scholar 

  17. Gan T, Hu SS (2011) Electrochemical sensors based on graphene materials. Microchim Acta 175:1

    Article  CAS  Google Scholar 

  18. Du Y, Luo XL, Xu JJ, Chen HY (2007) A simple method to fabricate a chitosan-gold nanoparticles film and its application in glucose biosensor. Bioelectrochemistry 70:342

    Article  CAS  Google Scholar 

  19. Chen XH, Matsumoto N, Hu YB, George SW (2002) Electrochemically mediated electrodeposition/electropolymerization to yield a glucose microbiosensor with improved characteristics. Anal Chem 74:368

    Article  CAS  Google Scholar 

  20. Salimi A, Hallaj R, Soltanian S, Mamkhezri H (2007) Nanomolar detection of hydrogen peroxide on glassy carbon electrode modified with electrodeposited cobalt oxide nanoparticles. Anal Chim Acta 594:24

    Article  CAS  Google Scholar 

  21. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565

    Article  CAS  Google Scholar 

  22. Chen LY, Tang YH, Wang K, Liu CB, Luo SL (2011) Direct electrodeposition of reduced graphene oxide on glassy carbon electrode and its electrochemical application. Electrochem Communica 13:133

    Article  CAS  Google Scholar 

  23. Li D, Kaner RB (2008) Graphene-based materials. Science 320:1170

    Article  CAS  Google Scholar 

  24. Niyogi S, Bekyarova E, Itkis ME, Mcwilliams JL, Hamon MA, Haddon RC (2006) Solution properties of graphite and graphene. J Am Chem Soc 128:7720

    Article  CAS  Google Scholar 

  25. Schniepp HC, Li JL, Mcallister MJ, Sai H, Herrera-Alonso M, Adamson DH, Prud’homme RK, Car R, Saville DA, Aksay IA (2006) Functionalized single graphene sheets derived from splitting graphite oxide. J Phys Chem B 110:8535

    Article  CAS  Google Scholar 

  26. Xu Y, Bai H, Lu GW, Li C, Shi GQ (2008) Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. J Am Chem Soc 130:5856

    Article  CAS  Google Scholar 

  27. Kang XH, Mai ZB, Zou XY, Cai PX, Mo JY (2007) Electrochemical biosensor based on multi-walled carbon nanotubes and Au nanoparticles synthesized in chitosan. J Nanosci Nanotechnol 7:1618

    Article  CAS  Google Scholar 

  28. Liu CB, Wang K, Luo SL, Tang YH, Chen LY (2011) Direct electrodeposition of graphene enabling the one − step synthesis of graphene − metal nanocomposite films. Small 7:1203

    Article  CAS  Google Scholar 

  29. Hu HT, Wang XB, Wang JC, Liu FM, Zhang M, Xu CH (2011) Microwave-assisted covalent modification of graphene nanosheets with chitosan and its electrorheological characteristics. Appl Surf Sci 257:2637

    Article  CAS  Google Scholar 

  30. Xu HF, Dai H, Chen GN (2010) Direct electrochemistry and electrocatalysis of hemoglobin protein entrapped in graphene and chitosan composite film. Talanta 81:334

    Article  CAS  Google Scholar 

  31. Wu LQ, Gadre AP, Yi H, Kastantin MJ, Rubloff GW, Bentley WE, Payne GF, Ghodssi R (2002) Voltage-dependent assembly of the polysaccharide chitosan onto an electrode surface. Langmuir 18:8620

    Article  CAS  Google Scholar 

  32. Wu LQ, Yi H, Li S, Rubloff GW, Bentley WE, Ghodssi R, Payne GF (2003) Spatially selective deposition of a reactive polysaccharide layer onto a patterned template. Langmuir 19:519

    Article  CAS  Google Scholar 

  33. Wu LQ, Lee K, Wang X, English DS, Losert W, Payne GF (2005) Chitosan-mediated and spatially selective electrodeposition of nanoscale particles. Langmuir 21:3641

    Article  CAS  Google Scholar 

  34. Yi H, Wu LQ, Ghodssi R, Rubloff GW, Payne GF, Bentley WE (2004) A robust technique for assembly of nucleic acid hybridization chips based on electrochemically templated chitosan. Anal Chem 76:365

    Article  CAS  Google Scholar 

  35. Lu XB, Zhang Q, Zhang L, Li JH (2006) Direct electron transfer of horseradish peroxidase and its biosensor based on chitosan and room temperature ionic liquid. Electrochem Communica 8:874

    Article  CAS  Google Scholar 

  36. William S, Hummers JR, Richard EO (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339

    Article  Google Scholar 

  37. Ferrari AC (2007) Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun 143:47

    Article  CAS  Google Scholar 

  38. Ianniello RM, Lindsay TJ, Yacynych AM (1982) Differential pulse voltammetric study of direct electron transfer in glucose oxidase chemically modified graphite electrodes. Anal Chem 54:1098

    Article  CAS  Google Scholar 

  39. Liu Q, Lu X, Li J, Yao X, Li JH (2007) Direct electrochemistry of glucose oxidase and electrochemical biosensing of glucose on quantum dots/carbon nanotubes electrodes. Biosens Bioelectron 22:3203

    Article  CAS  Google Scholar 

  40. Wu J, Zou YH, Gao N, Jiang JH, Shen GL, Yu RQ (2005) Electrochemical performances of C/Fe nanocomposite and its use for mediator-free glucose biosensor preparation. Talanta 68:12

    Article  CAS  Google Scholar 

  41. Wu BY, Hou SH, Yin F, Li J, Zhao ZX, Huang JD, Chen Q (2007) Amperometric glucose biosensor based on layer-by-layer assembly of multilayer films composed of chitosan, gold nanoparticles and glucose oxidase modified Pt electrode. Biosens Bioelectron 22:838

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (50878079, 51078129, 21047004) and the National Basic Research Program of China (2009CB421601).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shenglian Luo.

Additional information

Shanli Yang and Zhenzhen Lu contributed equally.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 87 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, S., Lu, Z., Luo, S. et al. Direct electrodeposition of a biocomposite consisting of reduced graphene oxide, chitosan and glucose oxidase on a glassy carbon electrode for direct sensing of glucose. Microchim Acta 180, 127–135 (2013). https://doi.org/10.1007/s00604-012-0911-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-012-0911-5

Keywords

Navigation