Skip to main content
Log in

Fluorometric sensing of DNA using curcumin encapsulated in nanoparticle-assembled microcapsules prepared from poly(diallylammonium chloride-co-sulfur dioxide)

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We report on the synthesis of microcapsules (MCs) containing self-assembled nanoparticles formed from poly[diallylammonium chloride-co-(sulfur dioxide)] in the presence of citrate and silica sol nanoparticles. The MCs are spherical, and SEM and optical microscopy reveal them to have micrometer size. The fluorescent probe curcumin was encapsulated in the MCs and found to be located in the shell. The fluorescence of curcumin in the MCs is altered depending on their microenvironment. Effects of pH and ammonia on the fluorescence of curcumin in the MCs also were studied. The brightness of the probe in the MCs increases on addition of DNA. The effect was used to determine DNA from fish sperm by fluorometry. The association constant (K) is 4 000 mL.g−1, and the number of binding sites is ~1.0.

Synthesis of microcapsule containing self-assembled nanoparticles by using Poly(diallyl ammonium chloride-co-SO2 in the presence of trisodium citrate and silica sol nanoparticles is achieved. Change in the photo-physical properties of the probe molecule suggests a different environment inside the microcapsule. The curcumin encapsulated microcapsules strongly bind to DNA by increasing the brightness with an association constant of 3.98 × 103 mL/g. DNA could be successfully determined using the prepared curcumin encapsulated microcapsules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Shenhar R, Rotello VM (2003) Nanoparticles: scaffolds and building blocks. Acc Chem Res 36:549–561

    Article  CAS  Google Scholar 

  2. Whitesides GM, Boncheva M (2002) Beyond molecules: self-assembly of mesoscopic and macroscopic components. Proc Natl Acd Sci USA 99:4769–4774

    Article  CAS  Google Scholar 

  3. Mann S, Ozin GA (1996) Synthesis of inorganic materials with complex form. Nature 382:313–318

    Article  CAS  Google Scholar 

  4. Hassenkam T, Norgaard K, Iversen L, Kiely CJ, Brust M, Bjornholm T (2002) Fabrication of 2D gold nanowires by self-assembly of gold nanoparticles on water surfaces in the presence of surfactants. Adv Mater 14:1126–1130

    Article  CAS  Google Scholar 

  5. Murray CB, Kagan CR, Bawendi MG (1995) Self-organization of CdSe nanocrystallites into three-dimensional quantum dot superlattices. Science 270:1335–1338

    Article  CAS  Google Scholar 

  6. Wong MS, Cha JN, Choi KS, Deming TJ, Stucky GD (2002) Assembly of nanoparticles into hollow spheres using block copolypeptides? Nano Lett 2:583–587

    Article  CAS  Google Scholar 

  7. Boal AK, Ilhan F, DeRouchey JE, Thurn-Albrecht T, Russell TP, Rotello VM (2000) Self-assembly of nanoparticles into structured spherical and network aggregates. Nature 404:746–748

    Article  CAS  Google Scholar 

  8. Bagariaa HG, Wong MS (2011) Polyamine–salt aggregate assembly of capsules as responsive drug delivery vehicles. J Mater Chem 21:9454–9466

    Article  Google Scholar 

  9. Patra D, Amali AJ, Rana RK (2009) Preparation and photophysics of HPTS-based nanoparticle-assembled microcapsules. J Mater Chem 19:4017–4021

    Article  CAS  Google Scholar 

  10. Amali AJ, Awwad NH, Rana RK, Patra D (2011) Nanoparticle assembled microcapsules for application as pH and ammonia sensor. Anal Chim Acta 708:75–83

    Article  CAS  Google Scholar 

  11. Amali AJ, Rangaraj N, Patra D, Rana RK (2012) Pyranine-3 in Poly(L-Lysine)-mediated nanoparticle–assembled microcapsules: its pH sensitive release while acting as a ratiometric optical pH sensor. Chem Comm 48:856–858

    Article  CAS  Google Scholar 

  12. Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (1998) Current protocols in molecular biology. Wiley, New York, pp A.3D1–A.3D.8, and reference cited therein

    Google Scholar 

  13. Karsten U, Wollenberger A (1977) Improvements in the ethidium bromide method for direct fluorometric estimation of DNA and RNA in cell and tissue homogenates. Anal Biochem 77:464–470

    Article  CAS  Google Scholar 

  14. Tanious A, Veal JM, Buczak H, Ratmeyer LS, Wilson WD (1992) Biochemistry 31:3103–3112

    Article  CAS  Google Scholar 

  15. Singer VL, Jones LJ, Yue ST, Haugland RP (1997) Anal Biochem 249:228–238

    Article  CAS  Google Scholar 

  16. Vitzthum F, Geiger G, Bisswanger H, Brunner H, Bernhagen J (1999) A quantitative fluorescence-based microplate assay for the determination of double-standarded DNA using SYBR Green I and a standard ultraviolet transillumaniting gel imaging system. Anal Biochem 276:59–64

    Article  CAS  Google Scholar 

  17. Gong H, Cai C, Ma Y, Chen X (2012) Detection of DNA hybridization by various spectroscopic methods using the copper tetraphenylprophrin complex as a probe. Microchim Acta 177:95–101

    Article  CAS  Google Scholar 

  18. Ammon HPT, Wahl MA (1991) Pharmacology of Curcuma longa. Planta Med 57:1–7

    Article  CAS  Google Scholar 

  19. Pizzo P, Scapin C, Vitadello M, Florean C, Gorza L (2010) Grp 94 acts as a mediator of curcumin-induced antioxidant defence in myogenic cells. J Cell Mol Med 14:970–981

    Article  CAS  Google Scholar 

  20. Sugiyama Y, Kawakishi S, Osawa T (1996) Involvement of the diketone moiety in the antioxidative mechanism of tetrahydrocurcumin. Biochem Pharmacol 52:519–525

    Article  CAS  Google Scholar 

  21. Yang F, Lim GP, Begum AN, Ubeda OJ, Simmons MR, Ambegaokar SS, Chen P, Kayed R, Glabe CG, Frautschy SA, Cole GM (2005) J Biol Chem 280:5892–5901

    Article  CAS  Google Scholar 

  22. Shishodia S, Chaturvedi MM, Aggarwal BB (2007) Role of curcumin in cancer therapy. Curr Probl Cancer 31:243–305

    Article  Google Scholar 

  23. Qureshi S, Shah AH, Ageel AM (1992) Toxicity studies on Alpinia galanga and Curcuma longa. Planta Med 58:124–127

    Article  CAS  Google Scholar 

  24. Lao CD, Ruffin TT, Normolle D, Heath DD, Murray SI, Bailey JM, Boggs ME, Crowell J, Rock CL, Brenner DE (2006) Dose escalation of a curcuminoid formulation. BMC Complement Altern Med 6:10

    Article  Google Scholar 

  25. Patra D, Barakat C (2011) Synchronous fluorescence spectroscopic study of solvatochromic curcumin dye. Spectrochimica Acta A Mol Biomol Spectrosc 79:1034–1041

    Article  CAS  Google Scholar 

  26. Patra D, Barakat C (2011) Unique role of ionic liquid [bmin][BF4] during curcumin–surfactant association and micellization of cationic, anionic and non-ionic surfactant solutions. Spectrochimica Acta A Mol Biomol Spectrosc 79:1823–1828

    Article  CAS  Google Scholar 

  27. Patra D, El Khoury E, Ahmadieh D, Darwish S, Tafech RM (2012) Effect of Curcumin on Liposome: Curcumin as a Molecular Probe for Monitoring Interaction of Ionic Liquids with 1,2-Dipalmitoyl-sn-glycero-3-phosphocholine Liposome. Photochem Photobiol 88:317–327

    Article  CAS  Google Scholar 

  28. Patra D, Barakat C, Tafech RM (2012) Study on effect of lipophilic curcumin on sub-domain IIA site of human serum albumin during unfolded and refolded states: a synchronous fluorescence spectroscopic study. Colloids Surf B: Biointerfaces 94:354–361

    Article  CAS  Google Scholar 

  29. Patra D, Barakat C (2012) Time-resolved fluorescence study during denaturation and renaturation of curcumin-myoglobin complex. Int J Biol Macromol 50:885–890

    Article  CAS  Google Scholar 

  30. Shen L, Ji HF (2007) Theoretical study on physiochemical properties of curcumin. Spectrochimica Acta A Mol Biomol Spectrosc 67:619–623

    Article  Google Scholar 

  31. Connors KA (1987) Binding constants. The measurements of molecular complex stability. Wiley, New York

    Google Scholar 

Download references

Acknowledgement

Financial support provided by American University of Beirut, Lebanon and Lebanese National Council of Scientific Research (LNCSR), Lebanon to carry out this work is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Digambara Patra.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 652 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patra, D., Aridi, R. & Bouhadir, K. Fluorometric sensing of DNA using curcumin encapsulated in nanoparticle-assembled microcapsules prepared from poly(diallylammonium chloride-co-sulfur dioxide). Microchim Acta 180, 59–64 (2013). https://doi.org/10.1007/s00604-012-0903-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-012-0903-5

Keywords

Navigation