Skip to main content
Log in

A colorimetric probe for the rapid and selective determination of mercury(II) based on the disassembly of gold nanorods

  • Short Communication
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We report on a novel mercury(II)-controlled approach for the disassembly of gold nanorods (AuNRs) that has led to a detection system for Hg(II). The modified AuNRs were fabricated by functionalizing AuNRs with L-cysteine via a thiol group chemisorption-type of interaction. L-cysteine induces the assembly of AuNRs through cooperative electrostatic interaction upon which the color of the solution of the AuNRs changes from blue-green to gray dark. The addition of Hg(II), in turn, causes the disassembly of the modified AuNRs and the color of the solution returns to blue-green. This effect enables the optical determination of Hg(II) in aqueous solution, with a linear response in the 0.5 to 250 μM Hg(II) concentration range, an excellent selectivity for Hg(II), and with recoveries ranging from 99 % to 106 % in spiked environmental water samples.

A novel mercury-controlled approach for the disassembly of L-cysteine-modified Au nanorods was proposed, with which a simple, specific and sensitive assay for Hg2+ was developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

References

  1. Nie ZH, Petukhova A, Kumacheva E (2010) Properties and emerging applications of self-assembled structures made from inorganic nanoparticles. Nat Nanotechnol 5:15–25

    Article  CAS  Google Scholar 

  2. Wang J, Zhang P, Li CM, Li YF, Huang CZ (2012) A highly selective and colorimetric assay of lysine by molecular-driven gold nanorods assembly. Biosens Bioelectron 34:197–201

    Article  CAS  Google Scholar 

  3. Cao R, Li BX (2011) A simple and sensitive method for visual detection of heparin using positively-charged gold nanoparticles as colorimetric probes. Chem Commun 47:2865–2867

    Article  CAS  Google Scholar 

  4. Huang X, Neretina S, El-Sayed MA (2009) Gold nanorods: from synthesis and properties to biological and biomedical applications. Adv Mater 21:4880–4910

    Article  CAS  Google Scholar 

  5. Mayer KM, Hafner JH (2011) Localized surface plasmon resonance sensors. Chem Rev 111:3828–3857

    Article  CAS  Google Scholar 

  6. Ding N, Zhao H, Peng WB, He YJ, Zhou Y, Yuan LF, Zhang YX (2012) A simple colorimetric sensor based on anti-aggregation of gold nanoparticles for Hg2+ detection. Colloid Surface A 395:161–167

    Article  CAS  Google Scholar 

  7. Lu G, Hou L, Zhang T, Li W, Liu J, Perriat P, Gong Q (2011) Anisotropic plasmonic sensing of individual or coupled gold nanorods. J Phys Chem C 115:22877–22885

    Article  CAS  Google Scholar 

  8. Hore MJA, Composto RJ (2010) Nanorod self-assembly for tuning optical absorption. ACS Nano 4:6941–6949

    Article  CAS  Google Scholar 

  9. Walker DA, Gupta VK (2008) Reversible end-to-end assembly of gold nanorods using a disulfide-modified polypeptide. Nanotechnology 19:435603

    Article  Google Scholar 

  10. Huang HW, Liu XY, Hu T, Chu PK (2010) Ultra-sensitive detection of cysteine by gold nanorod assembly. Biosens Bioelectron 25:2078–2083

    Article  CAS  Google Scholar 

  11. Thomas KG, Sudeep PK, Joseph STS (2005) Selective detection of cysteine and glutathione using gold nanorods. J Am Chem Soc 127:6516–6517

    Article  Google Scholar 

  12. Chan YT, Li SN, Moorefield CN, Wang PS, Shreiner CD, Newkome GR (2010) Self-assembly, disassembly, and reassembly of gold nanorods mediated by bis(terpyridine)-metal connectivity. Chem-Eur J 16:4164–416820

    Article  CAS  Google Scholar 

  13. Wang L, Zhu Y, Xu L, Chen W, Kuang H, Liu L, Agarwal A, Xu C, Kotov NA (2010) Side-by-side and end-to-end gold nanorod assemblies for environmental toxin sensing. Angew Chem Inter Edit 49:5472–5475

    Article  CAS  Google Scholar 

  14. Zhu YY, Qu CL, Kuang H, Xu LG, Liu LQ, Hua YF, Wang LB, Xu CL (2011) Simple, rapid and sensitive detection of antibiotics based on the side-by-side assembly of gold nanorod probes. Biosens Bioelectron 26:4387–4392

    Article  CAS  Google Scholar 

  15. Zhen SJ, Huang CZ, Wang J, Li YF (2009) End-to-end assembly of gold nanorods on the basis of aptamer-protein recognition. J Phys Chem C 113:21543–21547

    Article  CAS  Google Scholar 

  16. Sambhara S, Chakravarthy KV, Bonoiu AC, Davis WG, Ranjan P, Ding H, Hu R, Bowzard JB, Bergey EJ, Katz JM, Knight PR, Prasad PN (2010) Gold nanorod delivery of an ssRNA immune activator inhibits pandemic H1N1 influenza viral replication. P Natl Acad Sci 107:10172–10177

    Article  Google Scholar 

  17. Huang H, Qu C, Liu X, Huang S, Xu Z, Zhu Y, Chu PK (2011) Amplification of localized surface plasmon resonance signals by a gold nanorod assembly and ultra-sensitive detection of mercury. Chem Commun 47:6897–6899

    Article  CAS  Google Scholar 

  18. Liu DB, Qu WS, Chen WW, Zhang W, Wang Z, Jiang XY (2010) Highly sensitive, colorimetric detection of mercury (II) in aqueous media by quaternary ammonium group-capped gold nanoparticles at room temperature. Anal Chem 82:9606–9610

    Article  CAS  Google Scholar 

  19. Liu JM, Wang HF, Yan XP (2011) A gold nanorod based colorimetric probe for the rapid and selective detection of Cu2+ ions. Analyst 136:3904–3910

    Article  CAS  Google Scholar 

  20. Nakashima H, Furukawa K, Kashimura Y, Torimitsu K (2007) Anisotropic assembly of gold nanorods assisted by selective ion recognition of surface-anchored crown ether derivatives. Chem Commun 1080–1082

  21. Wang JF, Sun ZH, Ni WH, Yang Z, Kou XS, Li L (2008) pH-controlled reversible assembly and disassembly of gold nanorods. Small 4:1287–1292

    Article  Google Scholar 

  22. Miller JR, Rowland J, Lechler PJ, Desilets M, Hsu LC (1996) Dispersal of mercury-contaminated sediments by geomorphic processes, sixmile canyon, Nevada, USA: Implications to site characterization and remediation of fluvial environments. Water Air Soil Poll 86:373–388

    Article  CAS  Google Scholar 

  23. Li T, Zhou Y, Sun J, Tang D, Guo S, Ding X (2011) Ultrasensitive detection of mercury (II) ion using CdTe quantum dots in sol–gel-derived silica spheres coated with calix[6]arene as fluorescent probes. Microchim Acta 175:113–119

    Article  CAS  Google Scholar 

  24. Deng W, Tan Y, Li Y, Wen Y, Su Z, Huang Z, Huang S, Meng Y, Xie Q, Luo Y, Yao S (2010) Square wave voltammetric determination of Hg(II) using thiol functionalized chitosan-multiwalled carbon nanotubes nanocomposite film electrode. Microchim Acta 169:367–373

    Article  CAS  Google Scholar 

  25. Mandil A, Idrissi L, Amine A (2010) Stripping voltammetric determination of mercury(II) and lead(II) using screen-printed electrodes modified with gold films, and metal ion preconcentration with thiol-modified magnetic particles. Microchim Acta 170:299–305

    Article  CAS  Google Scholar 

  26. Gou L, Murphy CJ (2005) Fine-tuning the shape of gold nanorods. Chem Mater 17:3668–3672

    Article  CAS  Google Scholar 

  27. Schaefer JK, Morel FMM (2009) High methylation rates of mercury bound to cysteine by Geobacter sulfurreducens. Nat Geosci 2:123–126

    Article  CAS  Google Scholar 

  28. Dean JA, Lange NA (1999) Handbook of chemistry. McGraw-Hill

  29. Leng B, Zou L, Jiang JB, Tian H (2009) Colorimetric detection of mercuric ion (Hg2+) in aqueous media using chemodosimeter-functionalized gold nanoparticles. Sensor Actuat B-Chem 140:162–169

    Article  Google Scholar 

  30. Reynolds M, Marradi M, Imberty A, Penadés S, Pérez S (2012) Multivalent gold glycoclusters: high affinity molecular recognition by bacterial lectin PA-IL. Chem-Eur J 18:4264–4273

    Article  CAS  Google Scholar 

  31. Lin CY, Yu CJ, Lin YH, Tseng WL (2010) Colorimetric sensing of silver(I) and mercury (II) ions based on an assembly of Tween 20-stabilized gold nanoparticles. Anal Chem 82:6830–6837

    Article  CAS  Google Scholar 

  32. Knecht MR, Sethi M (2009) Bio-inspired colorimetric detection of Hg2+ and Pb2+ heavy metal ions using Au nanoparticles. Anal Bioanal Chem 394:33–46

    Article  CAS  Google Scholar 

  33. Lou TT, Chen ZP, Wang YQ, Chen LX (2011) Blue-to-red colorimetric sensing strategy for Hg2+ and Ag+ via redox-regulated surface chemistry of gold nanoparticles. Acs Appl Mater Inter 3:1568–1573

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors greatly appreciate the financial support from the National Natural Science Foundation of China (No. 21005033, 21105038), Specialized Research Fund for the Doctoral Program of Higher Education (No. 20103227120017), Natural Science Foundation of Jiangsu Province of China (No. BK2011242) and China Postdoctoral Science Foundation (No. 201104514, 20100481098).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guo-Xi Liang or Xiangyang Wu.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

Esm 1

(DOC 442 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, GX., Wang, L., Zhang, H. et al. A colorimetric probe for the rapid and selective determination of mercury(II) based on the disassembly of gold nanorods. Microchim Acta 179, 345–350 (2012). https://doi.org/10.1007/s00604-012-0882-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-012-0882-6

Keywords

Navigation