Skip to main content
Log in

Non-enzymatic analysis of glucose on printed films based on multi-walled carbon nanotubes

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We report on the fabrication of an enzyme–free electrochemical sensor for glucose based on a printed film consisting of multi–walled carbon nanotubes (MWCNTs). The MWCNT–based film can be produced by means of a flexographic printing process on a polycarbonate (PC) substrate. The electrochemical response of the MWCNT–based film (referred to as MWCNT–PC) towards the oxidation of glucose at pH 7 was studied by means of cyclic voltammetry and electrochemical impedance spectroscopy. The MWCNT–PC film exhibits substantial electrocatalytic activity towards the oxidation of glucose at an anodic potential of 0.30 V (vs. Ag/AgCl). The findings reveal that the MWCNT–PC film enables non–enzymatic sensing of glucose with a detection limit as low as 2.16 μM and a sensitivity of 1045 μA∙mM−1∙cm−2.

Enzyme–free electrochemical sensor for glucose consisting of multi–walled carbon nanotubes was fabricated by means of flexographic printing process on polycarbonate substrate. The sensor exhibits electrocatalytic activity for glucose oxidation at an anodic potential of 0.30 V (vs. Ag/AgCl) with detection limit of 2.16 μM and sensitivity of 1045 μA∙mM−1∙cm−2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Shaw JE, Sicree RA, Zimmet PZ (2010) Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract 87:4–14

    Article  CAS  Google Scholar 

  2. Reach G, Wilson GS (1992) Can continuous glucose monitoring be used for the treatment of diabetes. Anal Chem 64:381–386

    Google Scholar 

  3. Kuhn LS (1998) Biosensors: blockbuster or bomb? Electrochemical biosensors for diabetes monitoring. Electrochem Soc Interface 7:26–33

    CAS  Google Scholar 

  4. Cheng Z, Wang E, Yang X (2001) Capacitive detection of glucose using molecularly imprinted Polymers. Biosens Bioelectron 16:179–185

    Article  CAS  Google Scholar 

  5. Cherevko S, Chung CH (2009) Gold nanowire array electrode for non-enzymatic voltammetric and amperometric glucose detection. Sens Actuators B 142:216–223

    Article  Google Scholar 

  6. Rassaei L, Marken F (2010) Pulse-voltammetric glucose detection at gold junction electrodes. Anal Chem 82:7063–7067

    Article  CAS  Google Scholar 

  7. Koopala CGJ, Eijsmab B, Nolte RJM (1993) Chronoamperometric detection of glucose by a third generation biosensor constructed from conducting microtubules of polypyrrole. Synth Met 57:3689–3695

    Article  Google Scholar 

  8. Shim JH, Cha A, Lee Y, Lee C (2011) Nonenzymatic amperometric glucose sensor based on nanoporous gold/ruthenium electrode. Electroanalysis 23:2057–2062

    Article  CAS  Google Scholar 

  9. Pickup J (1993) Developing glucose sensors for in vivo use. Trends Biotechnol 11:285–291

    Article  CAS  Google Scholar 

  10. Wang J (2008) Electrochemical glucose biosensors. Chem Rev 108:814–825

    Article  CAS  Google Scholar 

  11. Wong CM, Wong KH, Chen XD (2008) Glucose oxidase: natural occurrence, function, properties and industrial applications. Appl Microbiol Biotechnol 78:927–938

    Article  CAS  Google Scholar 

  12. Wang D, Chen L (2009) Facile direct electron transfer in glucose oxidase modified electrodes. Electrochim Acta 54:4316–4320

    Article  CAS  Google Scholar 

  13. Kang X, Wang J, Wu H, Aksay IA, Liu J, Lin Y (2009) Glucose oxidase-graphene chitosan modified electrode for direct electrochemistry and glucose sensing. Biosens Bioelectron 25:901–905

    Article  CAS  Google Scholar 

  14. Garjonyte R, Malinauskas A (2000) Amperometric glucose biosensors based on Prussian Blue- and polyaniline-glucose oxidase modified electrodes. Biosens Bioelectron 15:445–451

    Article  CAS  Google Scholar 

  15. Yang M, Yang Y, Yang H, Shen G, Yu R (2006) Layer-by-layer self-assembled multilayer films of carbon nanotubes and platinum nanoparticles with polyelectrolyte for the fabrication of biosensors. Biomaterials 27:246–255

    Article  CAS  Google Scholar 

  16. Maye MM, Han L, Kariuki NN, Ly NK, Chan WB, Luo J, Zhong CJ (2003) Gold and alloy nanoparticles in solution and thin film assembly: spectrophotometric determination of molar absorptivity. Anal Chim Acta 496:17–27

    Article  CAS  Google Scholar 

  17. Zhu H, Lu X, Li M, Shao Y, Zhu Z (2009) Nonenzymatic glucose voltammetric sensor based on gold nanoparticles/carbon nanotubes/ionic liquid nanocomposite. Talanta 79:1446–1453

    Article  CAS  Google Scholar 

  18. Yun YH, Dong Z, Shanov V, Heineman WR, Halsall HB, Bhattacharya A, Conforti L, Narayan RK, Ball WS, Schulz MJ (2007) Nanotube electrodes and biosensors. Nano Today 2:30–37

    Article  Google Scholar 

  19. Sherigara BS, Kutner W, Souza FD (2003) Electrocatalytic properties and sensor applications of fullerenes and carbon nanotubes. Electroanalysis 15:753–772

    Article  CAS  Google Scholar 

  20. Pan D, Chen J, Yao S, Tao W, Nie L (2005) An amperometric glucose biosensor based on glucose oxidase immobilized in electropolymerized poly(o-aminophenol) and carbon nanotubes composite film on a gold electrode. Anal Sci 21:367–371

    Article  CAS  Google Scholar 

  21. Tsierkezos NG, Ritter U (2010) Synthesis and electrochemistry of multiwalled carbon nanotube films directly attached on silica substrate. J Solid State Electrochem 14:1101–1107

    Article  CAS  Google Scholar 

  22. Tsierkezos NG, Ritter U, Philippopoulos AI, Schröder D (2010) Electrochemical studies of the bis(triphenyl phosphine) ruthenium(II) complex, cis-[RuCl2(L)(PPh3)2], with L = 2-(2’-pyridyl)quinoxaline. J Coord Chem 63:3517–3530

    Article  CAS  Google Scholar 

  23. Tsierkezos NG, Ritter U (2011) Determination of impedance spectroscopic behavior of triphenylphosphine on various electrodes. Anal Lett 44:1416–1430

    Article  CAS  Google Scholar 

  24. Tsierkezos NG, Ritter U (2012) Simultaneous detection of ascorbic acid and uric acid at MWCNT modified electrodes. J Nanosci Lett 2:25 (12 pages)

    Google Scholar 

  25. Meier B, Egermann L, Voigt S, Stanel M, Kempa H, Hübler AC (2011) Drift in the resistance of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) printed films during thermal cycling. Thin Solid Films 519:6610–6612

    Article  CAS  Google Scholar 

  26. Kempa H, Hambsch M, Reuter K, Stanel M, Schmidt GC, Meier B, Hübler AC (2011) Complementary ring oscillator exclusively prepared by means of gravure and flexographic printing. IEEE Trans Electron Dev 58:2765–2769

    Article  Google Scholar 

  27. Hübler AC, Trnovec B, Zillger T, Ali M, Wetzold N, Mingebach M, Wagenpfahl A, Deibel C, Dyakonov V (2011) Printed paper photovoltaic cells. Adv Energy Mater 1:1018–1022

    Article  Google Scholar 

  28. Tsierkezos NG, Wetzold N, Ritter U (2012) Electrochemical responses of carbon nanotubes-based films printed on polymer substances. Ionics. doi:10.1007/s11581-012-0729-5

  29. Huh P, Kim M, Kim SC (2012) Glucose sensor using periodic nanostructured hybrid 1D Au/ZnO arrays. Mater Sci Eng C 32:1288–1292

    Article  CAS  Google Scholar 

  30. Danaee I, Jafarian M, Forouzandeh F, Gobal F (2012) Kinetic studies of glucose electrocatalytic oxidation on GC/Ni electrode. Int J Chem Kinet. doi:10.1002/kin.20721

Download references

Acknowledgments

The authors would like to thank Mrs. D. Schneider (TU Ilmenau). The present research work was finally supported by BMBF (CarbonSens, contract number: 16SV5326).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikos G. Tsierkezos.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 1295 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsierkezos, N.G., Ritter, U., Wetzold, N. et al. Non-enzymatic analysis of glucose on printed films based on multi-walled carbon nanotubes. Microchim Acta 179, 157–161 (2012). https://doi.org/10.1007/s00604-012-0881-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-012-0881-7

Keywords

Navigation