Microchimica Acta

, Volume 179, Issue 1–2, pp 157–161 | Cite as

Non-enzymatic analysis of glucose on printed films based on multi-walled carbon nanotubes

  • Nikos G. Tsierkezos
  • Uwe Ritter
  • Nora Wetzold
  • Arved Carl Hübler
Original Paper

Abstract

We report on the fabrication of an enzyme–free electrochemical sensor for glucose based on a printed film consisting of multi–walled carbon nanotubes (MWCNTs). The MWCNT–based film can be produced by means of a flexographic printing process on a polycarbonate (PC) substrate. The electrochemical response of the MWCNT–based film (referred to as MWCNT–PC) towards the oxidation of glucose at pH 7 was studied by means of cyclic voltammetry and electrochemical impedance spectroscopy. The MWCNT–PC film exhibits substantial electrocatalytic activity towards the oxidation of glucose at an anodic potential of 0.30 V (vs. Ag/AgCl). The findings reveal that the MWCNT–PC film enables non–enzymatic sensing of glucose with a detection limit as low as 2.16 μM and a sensitivity of 1045 μA∙mM−1∙cm−2.

Figure

Enzyme–free electrochemical sensor for glucose consisting of multi–walled carbon nanotubes was fabricated by means of flexographic printing process on polycarbonate substrate. The sensor exhibits electrocatalytic activity for glucose oxidation at an anodic potential of 0.30 V (vs. Ag/AgCl) with detection limit of 2.16 μM and sensitivity of 1045 μA∙mM−1∙cm−2.

Keywords

Enzyme-free sensor Glucose Multi-walled carbon nanotubes Flexographic printing process Polycarbonate substrate 

Supplementary material

604_2012_881_MOESM1_ESM.docx (1.3 mb)
ESM 1(DOCX 1295 kb)

References

  1. 1.
    Shaw JE, Sicree RA, Zimmet PZ (2010) Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract 87:4–14CrossRefGoogle Scholar
  2. 2.
    Reach G, Wilson GS (1992) Can continuous glucose monitoring be used for the treatment of diabetes. Anal Chem 64:381–386Google Scholar
  3. 3.
    Kuhn LS (1998) Biosensors: blockbuster or bomb? Electrochemical biosensors for diabetes monitoring. Electrochem Soc Interface 7:26–33Google Scholar
  4. 4.
    Cheng Z, Wang E, Yang X (2001) Capacitive detection of glucose using molecularly imprinted Polymers. Biosens Bioelectron 16:179–185CrossRefGoogle Scholar
  5. 5.
    Cherevko S, Chung CH (2009) Gold nanowire array electrode for non-enzymatic voltammetric and amperometric glucose detection. Sens Actuators B 142:216–223CrossRefGoogle Scholar
  6. 6.
    Rassaei L, Marken F (2010) Pulse-voltammetric glucose detection at gold junction electrodes. Anal Chem 82:7063–7067CrossRefGoogle Scholar
  7. 7.
    Koopala CGJ, Eijsmab B, Nolte RJM (1993) Chronoamperometric detection of glucose by a third generation biosensor constructed from conducting microtubules of polypyrrole. Synth Met 57:3689–3695CrossRefGoogle Scholar
  8. 8.
    Shim JH, Cha A, Lee Y, Lee C (2011) Nonenzymatic amperometric glucose sensor based on nanoporous gold/ruthenium electrode. Electroanalysis 23:2057–2062CrossRefGoogle Scholar
  9. 9.
    Pickup J (1993) Developing glucose sensors for in vivo use. Trends Biotechnol 11:285–291CrossRefGoogle Scholar
  10. 10.
    Wang J (2008) Electrochemical glucose biosensors. Chem Rev 108:814–825CrossRefGoogle Scholar
  11. 11.
    Wong CM, Wong KH, Chen XD (2008) Glucose oxidase: natural occurrence, function, properties and industrial applications. Appl Microbiol Biotechnol 78:927–938CrossRefGoogle Scholar
  12. 12.
    Wang D, Chen L (2009) Facile direct electron transfer in glucose oxidase modified electrodes. Electrochim Acta 54:4316–4320CrossRefGoogle Scholar
  13. 13.
    Kang X, Wang J, Wu H, Aksay IA, Liu J, Lin Y (2009) Glucose oxidase-graphene chitosan modified electrode for direct electrochemistry and glucose sensing. Biosens Bioelectron 25:901–905CrossRefGoogle Scholar
  14. 14.
    Garjonyte R, Malinauskas A (2000) Amperometric glucose biosensors based on Prussian Blue- and polyaniline-glucose oxidase modified electrodes. Biosens Bioelectron 15:445–451CrossRefGoogle Scholar
  15. 15.
    Yang M, Yang Y, Yang H, Shen G, Yu R (2006) Layer-by-layer self-assembled multilayer films of carbon nanotubes and platinum nanoparticles with polyelectrolyte for the fabrication of biosensors. Biomaterials 27:246–255CrossRefGoogle Scholar
  16. 16.
    Maye MM, Han L, Kariuki NN, Ly NK, Chan WB, Luo J, Zhong CJ (2003) Gold and alloy nanoparticles in solution and thin film assembly: spectrophotometric determination of molar absorptivity. Anal Chim Acta 496:17–27CrossRefGoogle Scholar
  17. 17.
    Zhu H, Lu X, Li M, Shao Y, Zhu Z (2009) Nonenzymatic glucose voltammetric sensor based on gold nanoparticles/carbon nanotubes/ionic liquid nanocomposite. Talanta 79:1446–1453CrossRefGoogle Scholar
  18. 18.
    Yun YH, Dong Z, Shanov V, Heineman WR, Halsall HB, Bhattacharya A, Conforti L, Narayan RK, Ball WS, Schulz MJ (2007) Nanotube electrodes and biosensors. Nano Today 2:30–37CrossRefGoogle Scholar
  19. 19.
    Sherigara BS, Kutner W, Souza FD (2003) Electrocatalytic properties and sensor applications of fullerenes and carbon nanotubes. Electroanalysis 15:753–772CrossRefGoogle Scholar
  20. 20.
    Pan D, Chen J, Yao S, Tao W, Nie L (2005) An amperometric glucose biosensor based on glucose oxidase immobilized in electropolymerized poly(o-aminophenol) and carbon nanotubes composite film on a gold electrode. Anal Sci 21:367–371CrossRefGoogle Scholar
  21. 21.
    Tsierkezos NG, Ritter U (2010) Synthesis and electrochemistry of multiwalled carbon nanotube films directly attached on silica substrate. J Solid State Electrochem 14:1101–1107CrossRefGoogle Scholar
  22. 22.
    Tsierkezos NG, Ritter U, Philippopoulos AI, Schröder D (2010) Electrochemical studies of the bis(triphenyl phosphine) ruthenium(II) complex, cis-[RuCl2(L)(PPh3)2], with L = 2-(2’-pyridyl)quinoxaline. J Coord Chem 63:3517–3530CrossRefGoogle Scholar
  23. 23.
    Tsierkezos NG, Ritter U (2011) Determination of impedance spectroscopic behavior of triphenylphosphine on various electrodes. Anal Lett 44:1416–1430CrossRefGoogle Scholar
  24. 24.
    Tsierkezos NG, Ritter U (2012) Simultaneous detection of ascorbic acid and uric acid at MWCNT modified electrodes. J Nanosci Lett 2:25 (12 pages)Google Scholar
  25. 25.
    Meier B, Egermann L, Voigt S, Stanel M, Kempa H, Hübler AC (2011) Drift in the resistance of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) printed films during thermal cycling. Thin Solid Films 519:6610–6612CrossRefGoogle Scholar
  26. 26.
    Kempa H, Hambsch M, Reuter K, Stanel M, Schmidt GC, Meier B, Hübler AC (2011) Complementary ring oscillator exclusively prepared by means of gravure and flexographic printing. IEEE Trans Electron Dev 58:2765–2769CrossRefGoogle Scholar
  27. 27.
    Hübler AC, Trnovec B, Zillger T, Ali M, Wetzold N, Mingebach M, Wagenpfahl A, Deibel C, Dyakonov V (2011) Printed paper photovoltaic cells. Adv Energy Mater 1:1018–1022CrossRefGoogle Scholar
  28. 28.
    Tsierkezos NG, Wetzold N, Ritter U (2012) Electrochemical responses of carbon nanotubes-based films printed on polymer substances. Ionics. doi:10.1007/s11581-012-0729-5
  29. 29.
    Huh P, Kim M, Kim SC (2012) Glucose sensor using periodic nanostructured hybrid 1D Au/ZnO arrays. Mater Sci Eng C 32:1288–1292CrossRefGoogle Scholar
  30. 30.
    Danaee I, Jafarian M, Forouzandeh F, Gobal F (2012) Kinetic studies of glucose electrocatalytic oxidation on GC/Ni electrode. Int J Chem Kinet. doi:10.1002/kin.20721

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Nikos G. Tsierkezos
    • 1
  • Uwe Ritter
    • 1
  • Nora Wetzold
    • 2
  • Arved Carl Hübler
    • 2
  1. 1.Institut für Chemie und BiotechnikTechnische Universität IlmenauIlmenauGermany
  2. 2.Institut für Print- und Medientechnik, Fakultät für MaschinenbauTechnische Universität ChemnitzChemnitzGermany

Personalised recommendations