Skip to main content
Log in

Electrochemical immunoassay for subgroup J of avian leukosis viruses using a glassy carbon electrode modified with a film of poly (3-thiophene boronic acid), gold nanoparticles, graphene and immobilized antibody

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We have modified a glassy carbon electrode (GCE) with a film of poly(3-thiophene boronic acid), gold nanoparticles and graphene, and an antibody (Ab) was immobilized on its surface through the covalent bond formed between the boronic acid group and the glycosyl groups of the Ab. Subgroup J of avian leukosis viruses (ALV-J) were electrochemically determined with the help of this electrode. There is a linear relationship between the electron transfer resistance (R et) and the concentration of ALV-J in the range from 527 to 3,162 TCID50⋅mL−1 (where TCID50 is the 50 % tissue culture infective dose). The detection limit is 210 TCID50⋅mL−1 (at an S/N of 3), and the correlation coefficient (R) is 0.9964. The electrochemical immunoassay showed good selectivity, stability and reproducibility.

Schematic illustration of the stepwise immunosensor fabrication process

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wang Y, Kang Z, Gao Y, Qin L, Chen L, Wang Q, Li J, Gao H, Qi X, Lin H, Wang X (2011) Development of loop-mediated isothermal amplification for rapid detection of avian leukosis virus subgroup A. J Virol Methods 173:31

    Article  CAS  Google Scholar 

  2. Zhou G, Cai W, Liu X, Niu C, Gao C, Si C, Zhang W, Qu L, Han L (2011) A duplex real-time reverse transcription polymerase chain reaction for the detection and quantitation of avian leukosis virus subgroups A and B. J Virol Methods 173:275

    Article  CAS  Google Scholar 

  3. Kim Y, Gharaibeh SM, Stedman NL, Brown TP (2002) Comparison and verification of quantitative competitive reverse transcription polymerase chain reaction (QC-RT-PCR) and real time RT-PCR for avian leukosis virus subgroup J. J Virol Methods 102:1

    Article  CAS  Google Scholar 

  4. Gharaibeh S, Brown T, Stedman N, Pantin M (2001) Immunohistochemical localization of avian leukosis virus subgroup J in tissues from naturally infected chickens. Avian Dis 45:992

    Article  CAS  Google Scholar 

  5. Payne L, Gillespie A, Howes K (1993) Unsuitability of chicken sera for detection of exogenous ALV by the group-specific antigen ELISA. Vet Rec 132:555

    Article  CAS  Google Scholar 

  6. Huang J-G, Lee C-L, Lin H-M, Chuang T-L, Wang W-S, Juang R-H, Wang C-H, Lee CK, Lin S-M, Lin C-W (2006) A miniaturized germanium-doped silicon dioxide-based surface plasmon resonance waveguide sensor for immunoassay detection. Biosens Bioelectron 22:519

    Article  Google Scholar 

  7. Hu Y, Zhao Z, Wan Q (2011) Facile preparation of carbon nanotube-conducting polymer network for sensitive electrochemical immunoassay of Hepatitis B surface antigen in serum. Bioelectrochemistry 81:59

    Article  CAS  Google Scholar 

  8. Yin Z, Liu Y, Jiang L-P, Zhu J-J (2011) Electrochemical immunosensor of tumor necrosis factor α based on alkaline phosphatase functionalized nanospheres. Biosens Bioelectron 26:1890

    Article  CAS  Google Scholar 

  9. Castilho MDS, Laube T, Yamanaka H, Alegret S, Pividori MI (2011) Magneto immunoassays for plasmodium falciparum histidine-rich protein 2 related with malaria based on magnetic nanoparticles. Anal Chem 83:5570

    Article  Google Scholar 

  10. Wan Y, Wang Y, Wu J, Zhang D (2010) Graphene oxide sheet-mediated silver enhancement for application to electrochemical biosensors. Anal Chem 83:648

    Article  Google Scholar 

  11. Li Q, Tang D, Tang J, Su B, Huang J, Chen G (2011) Carbon nanotube-based symbiotic coaxial nanocables with nanosilica and nanogold particles as labels for electrochemical immunoassay of carcinoembryonic antigen in biological fluids. Talanta 84:538

    Article  CAS  Google Scholar 

  12. Gan T, Hu S (2011) Electrochemical sensors based on graphene materials. Microchim Acta 175:1

    Article  CAS  Google Scholar 

  13. Yin H, Zhou Y, Ai S, Han R, Tang T, Zhu L (2010) Electrochemical behavior of bisphenol A at glassy carbon electrode modified with gold nanoparticles, silk fibroin, and PAMAM dendrimers. Microchim Acta 170:99

    Article  CAS  Google Scholar 

  14. Yin H, Zhou Y, Meng X, Tang T, Ai S, Zhu L (2011) Electrochemical behaviour of Sudan I at Fe3O4 nanoparticles modified glassy carbon electrode and its determination in food samples. Food Chem 127:1348

    Article  CAS  Google Scholar 

  15. Fan H, Ju P, Ai S (2010) Controllable synthesis of CdSe nanostructures with tunable morphology and their application in DNA biosensor of avian influenza virus. Sens Actuators B 149:98

    Article  Google Scholar 

  16. Shang K, Ai S, Ma Q, Tang T, Yin H, Han H (2011) Effective photocatalytic disinfection of E. coli and S. aureus using polythiophene/MnO2 nanocomposite photocatalyst under solar light irradiation. Desalination 278:173

    Article  CAS  Google Scholar 

  17. De Guzman JM, Soper SA, McCarley RL (2010) Assessment of glycoprotein interactions with 4-[(2-aminoethyl)carbamoyl]phenylboronic acid surfaces using surface plasmon resonance spectroscopy. Anal Chem 82:8970

    Article  Google Scholar 

  18. Zhong X, Bai HJ, Xu JJ, Chen HY, Zhu YH (2010) A reusable interface constructed by 3-aminophenylboronic acid-functionalized multiwalled carbon nanotubes for cell capture, release, and cytosensing. Adv Funct Mater 20:992

    Article  CAS  Google Scholar 

  19. Park J-Y, Chang B-Y, Nam H, Park S-M (2008) Selective electrochemical sensing of glycated hemoglobin (HbA1c) on thiophene-3-boronic acid self-assembled monolayer covered gold electrodes. Anal Chem 80:8035

    Article  CAS  Google Scholar 

  20. Matsumoto A, Sato N, Kataoka K, Miyahara Y (2009) Noninvasive sialic acid detection at cell membrane by using phenylboronic acid modified self-assembled monolayer gold electrode. J Am Chem Soc 131:12022

    Article  CAS  Google Scholar 

  21. Yeap WS, Tan YY, Loh KP (2008) Using detonation nanodiamond for the specific capture of glycoproteins. Anal Chem 80:4659

    Article  CAS  Google Scholar 

  22. Liu T, Su H, Qu X, Ju P, Cui L, Ai S (2011) Acetylcholinesterase biosensor based on 3-carboxyphenylboronic acid/reduced graphene oxide–gold nanocomposites modified electrode for amperometric detection of organophosphorus and carbamate pesticides. Sens Actuators B 160:1255

    Article  CAS  Google Scholar 

  23. Cui L, Xu M, Zhu J, Ai S (2011) A novel hydrogen peroxide biosensor based on the specific binding of horseradish peroxidase with polymeric thiophene-3-boronic acid monolayer in hydrophilic room temperature ionic liquid. Synth Met 161:1686

    Article  CAS  Google Scholar 

  24. Li Y, Wu Y (2009) Coassembly of graphene oxide and nanowires for large-area nanowire alignment. J Am Chem Soc 131:5851

    Article  CAS  Google Scholar 

  25. Feng M, Sun R, Zhan H, Chen Y (2010) Decoration of carbon nanotubes with CdS nanoparticles by polythiophene interlinking for optical limiting enhancement. Carbon 48:1177

    Article  CAS  Google Scholar 

  26. Oliveira MM, Zarbin AJG (2008) Carbon nanotubes decorated with both gold nanoparticles and polythiophene. J Phys Chem C 112:18783

    CAS  Google Scholar 

  27. Zhang X, Wu Y, Tu Y, Liu S (2008) A reusable electrochemical immunosensor for carcinoembryonic antigenvia molecular recognition of glycoproteinantibody by phenylboronic acid self-assembly layer on gold. Analyst 133:485

    Article  CAS  Google Scholar 

  28. Yin H, Zhou Y, Ma Q, Liu T, Ai S, Zhu L (2011) Electrochemical oxidation behavior of guanosine-5′-monophosphate on a glassy carbon electrode modified with a composite film of graphene and multi-walled carbon nanotubes, and its amperometric determination. Microchim Acta 172:343

    Article  CAS  Google Scholar 

  29. Wang Y, Li Y, Tang L, Lu J, Li J (2009) Application of graphene-modified electrode for selective detection of dopamine. Electrochem Commun 11:889

    Article  CAS  Google Scholar 

  30. Li T, Wang SJ, Yu CS, Ma YC, Li KL, Lin LW (2011) Direct conversion of methane to methanol over nano-[Au/SiO2] in [Bmim]Cl ionic liquid. Appl Catal A 398:150

    Article  CAS  Google Scholar 

  31. Shan C, Yang H, Han D, Zhang Q, Ivaska A, Niu L (2010) Graphene/AuNPs/chitosan nanocomposites film for glucose biosensing. Biosens Bioelectron 25:1070

    Article  CAS  Google Scholar 

  32. Su H, Fan H, Ai S, Wu N, Fan H, Bian P, Liu J (2011) Selective determination of melamine in milk samples using 3-mercapto-1-propanesulfonate-modified gold nanoparticles as colorimetric probe. Talanta 85:1338

    Article  CAS  Google Scholar 

  33. Yuan Y, Yuan R, Chai Y, Zhuo Y, Bai L, Liao Y (2010) An electrochemical enzyme bioaffinity electrode based on biotin-streptavidin conjunction and bienzyme substrate recycling for amplification. Anal Biochem 405:121

    Article  CAS  Google Scholar 

  34. Lee D, Chander Y, Goyal SM, Cui T (2011) Carbon nanotube electric immunoassay for the detection of swine influenza virus H1N1. Biosens Bioelectron 26:3482

    Article  CAS  Google Scholar 

  35. Hu J, Li W, Wang T, Lin Z, Jiang M, Hu F (2011) Development of a label-free and innovative approach based on surface plasmon resonance biosensor for on-site detection of infectious bursal disease virus (IBDV). Biosens Bioelectron 31:475

    Google Scholar 

  36. Liu X, Cheng Z, Fan H, Ai S, Han R (2011) Electrochemical detection of avian influenza virus H5N1 gene sequence using a DNA aptamer immobilized onto a hybrid nanomaterial-modified electrode. Electrochim Acta 56:6266

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 21075078, 21105056) and the Natural Science Foundation of Shandong province, China (No. ZR2010BM005, ZR2011BQ001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ziqiang Cheng or Shiyun Ai.

Additional information

Zhenzhen Wang and Kun Shang contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 274 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Z., Shang, K., Dong, J. et al. Electrochemical immunoassay for subgroup J of avian leukosis viruses using a glassy carbon electrode modified with a film of poly (3-thiophene boronic acid), gold nanoparticles, graphene and immobilized antibody. Microchim Acta 179, 227–234 (2012). https://doi.org/10.1007/s00604-012-0874-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-012-0874-6

Keywords

Navigation