Microchimica Acta

, Volume 179, Issue 1–2, pp 115–121 | Cite as

Amperometric enzyme electrodes for the determination of volatile alcohols in the headspace above fruit and vegetable juices

  • Claudia Schlangen
  • Martin HämmerleEmail author
  • Ralf Moos
Original Paper


We have investigated two amperometric biosensors for the determination of volatile alcohols in the headspace of fruit juices and vegetable juices. One type of sensor is based on the use of alcohol dehydrogenase (ADH) and the detection of NADH (at +300 mV vs. Ag/AgCl with phenothiazine as redox mediator), and the other on the use of alcohol oxidase (AOx) and the detection of hydrogen peroxide (at +600 mV vs. Ag/AgCl). Samples were analyzed with the AOx-based biosensor by measuring the alcohol concentration in the headspace above the liquid without prior sorption or pre-concentration. The sensor has a linear response in the range 0.1–20.0 mM of alcohol (referred to the concentration in the liquid sample). It has excellent stability in that the signal decreases by 4.5 % only over a 60 h operational period. However, a comparison of the AOx-based biosensor with HPLC and an enzyme test kit revealed an overestimation of ethanol levels in juices by the biosensor due to the simultaneous detection of methanol present in the samples. A flow-through version of the biosensor placed at the exit of a HPLC system proved this assumption. In order to improve the specificity for ethanol, the ADH-based sensor was studied. While showing no cross sensitivity to methanol, its stability was rather limited, this making it not suitable for practical applications. Headspace analysis offers advantages such as high selectivity (because it can be interfered by volatile substances only) and the lack of contamination of the sensor by species in the liquid juice.


Headspace analysis of alcohol in juices (tomato, grape, currant, apple) with an amperometric enzyme electrode: sensor set-up (left), calibration with ethanol samples (right)


Alcohol oxidase Alcohol dehydrogenase Ethanol Methanol Fruit juices 



The authors would like to thank Dr. Marcus A. Horn (Lehrstuhl für Ökologische Mikrobiologie, University of Bayreuth) for his kind support in the HPLC measurements.

Supplementary material

604_2012_867_MOESM1_ESM.doc (33 kb)
ESM 1 (DOC 33 kb)


  1. 1.
    Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz (2002) Leitsätze für Fruchtsäfte. Accessed 28 February 2012
  2. 2.
    Wucherpfennig K, Dietrich H, Bechtel J (1983) Actual, total and potential methyl alcohol content of fruit juices. Flüssiges Obst 50:348Google Scholar
  3. 3.
    Braun G, Zur K (2009) Methanol: Wie sicher sind unsere Getränke. Accessed 28 February 2012
  4. 4.
    Rodionov YV, Keppen OI, Sukhacheva MV (2002) A photometric assay for ethanol. Appl Biochem Microbiol 38:395CrossRefGoogle Scholar
  5. 5.
    Gessei T, Sato H, Kazawa E, Kudo H, Saito H, Mitsubayashi K (2009) Bio-sniffers for ethanol and acetaldehyde using carbon and Ag/AgCl coated electrodes. Microchim Acta 165:179CrossRefGoogle Scholar
  6. 6.
    Mitsubayashi K, Matsunaga H, Nishio G, Toda S, Nakanishi Y (2005) Bio-sniffer sticks for breath analysis after drinking. Sens Actuators B 108:660CrossRefGoogle Scholar
  7. 7.
    Mitsubayashi K, Matsunaga H, Nishio G, Toda S, Nakanishi Y (2005) Bioelectronic sniffers for ethanol and acetaldehyde in breath air after drinking. Biosens Bioelectron 20:1573CrossRefGoogle Scholar
  8. 8.
    Kudo H, Goto T, Saito T, Saito H, Otsuka K, Mitsubayashi K (2008) Biochemical sniffer with choline oxidase for measurement of choline vapour. Microchim Acta 160:421CrossRefGoogle Scholar
  9. 9.
    Dennison MJ, Hall JM, Turner APF (1996) Direct monitoring of formaldehyde vapour and detection of ethanol vapour using dehydrogenase-based biosensors. Analyst 121:1769CrossRefGoogle Scholar
  10. 10.
    Hämmerle M, Hilgert K, Achmann S, Moos R (2010) Direct monitoring of organic vapours with amperometric enzyme gas sensors. Biosens Bioelectron 25:1521CrossRefGoogle Scholar
  11. 11.
    Park J, Yee H, Kim S (1995) Amperometric biosensor for determination of ethanol vapor. Biosens Bioelectron 10:587CrossRefGoogle Scholar
  12. 12.
    Mitsubayashi K, Nishio G, Sawai M, Saito T, Kudo H, Saito H, Otsuka K, Noguer T, Marty J (2008) A bio-sniffer stick with FALDH (formaldehyde dehydrogenase) for convenient analysis of gaseous formaldehyde. Sens Actuators B 130:32CrossRefGoogle Scholar
  13. 13.
    Hämmerle M, Achmann S, Moos R (2008) Gas diffusion electrodes for use in an amperometric enzyme biosensor. Electroanal 20:2279CrossRefGoogle Scholar
  14. 14.
    Achmann S, Hermann M, Hilbrig F, Jérôme V, Hämmerle M, Freitag R, Moos R (2008) Direct detection of formaldehyde in air by a novel NAD+- and glutathione-independent formaldehyde dehydrogenase-based biosensor. Talanta 75:786CrossRefGoogle Scholar
  15. 15.
    Sandström KJM, Newman J, Sunesson A, Levin J, Turner APF (2000) Amperometric biosensor for formic acid in air. Sens Actuators B 70:182CrossRefGoogle Scholar
  16. 16.
    Sandström KJM, Sunesson AL, Levin JO, Turner APF (2003) A gas-phase biosensor for environmental monitoring of formic acid: laboratory and field validation. J Environ Monit 5:477CrossRefGoogle Scholar
  17. 17.
    Minamide T, Mitsubayashi K, Saito H (2005) Bioelectronic sniffer with monoamine oxidase for methyl mercaptan vapor. Sens Actuators B 108:639CrossRefGoogle Scholar
  18. 18.
    Mitsubayashi K, Nakayama K, Taniguchi M, Saito H, Otsuka K, Kudo H (2006) Bioelectronic sniffer for nicotine using enzyme inhibition. Anal Chim Acta 573–574:69CrossRefGoogle Scholar
  19. 19.
    Dennison MJ, Hall JM, Turner APF (1995) Gas-phase microbiosensor for monitoring phenol vapor at ppb levels. Anal Chem 67:3922CrossRefGoogle Scholar
  20. 20.
    Kaisheva A, Iliev I, Christov S, Kazareva R (1997) Electrochemical gas biosensor for phenol. Sens Actuators B 44:571CrossRefGoogle Scholar
  21. 21.
    Hämmerle M, Hilgert K, Horn MA, Moos R (2011) Analysis of volatile alcohols in apple juices by an electrochemical biosensor measuring in the headspace above the liquid. Sens Actuators B 158:313CrossRefGoogle Scholar
  22. 22.
    Leskovac V, Trivic S, Pericin D (2002) The three zinc-containing alcohol dehydrogenases from baker’s yeast, Saccharomyces cerevisiae. FEMS Yeast Res 2:481Google Scholar
  23. 23.
    Rebelo MJF, Compagnone D, Guibault GG, Lubranod GJ (1994) Alcohol electrodes in beverage measurements. Anal Lett 27:3027CrossRefGoogle Scholar
  24. 24.
    Santos AS, Pereira AC, Durán N, Kubota LT (2006) Amperometric biosensor for ethanol based on co-immobilization of alcohol dehydrogenase and Meldola’s Blue on multi-wall carbon nanotube. Electrochim Acta 52:215CrossRefGoogle Scholar
  25. 25.
    Sander R (1999) Compilation of Henry’s law constants for inorganic and organic species of potential importance in environmental chemistry. Accessed 28 February 2012
  26. 26.
    Dennison MJ, Turner APF (2000) Gas-phase enzyme electrodes. In: Bilitewski U, Turner APF (eds) Biosensors for environmental monitoring. Harwood Academic Publishers, Amsterdam, pp 285–308Google Scholar
  27. 27.
    Kühne J, Hener U, Jung J, Münch A, Dietrich H, Patz C, Mosandl A (2007) Zur Qualitätsbewertung von Apfelsaft – 3-Methylbutanol, 2-Methylbutanol und Ethanol als Kenngrößen. Dtsch Lebensm Rundsch 103:247Google Scholar
  28. 28.
    Bucur B, Radu GL, Toader CN (2008) Analysis of methanol–ethanol mixtures from falsified beverages using a dual biosensors amperometric system based on alcohol dehydrogenase and alcohol oxidase. Eur Food Res Technol 226:1335CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Claudia Schlangen
    • 1
  • Martin Hämmerle
    • 1
    Email author
  • Ralf Moos
    • 1
  1. 1.Lehrstuhl für FunktionsmaterialienUniversity of BayreuthBayreuthGermany

Personalised recommendations