Skip to main content
Log in

Comparison of three different configurations of dual ultramicroelectrodes for the decomposition of S-Nitroso-L-glutathione and the direct detection of nitric oxide

  • Short Communication
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We report on the characterization and use of three configurations of dual gold ultramicroelectrodes (UMEs), namely a ring-disc electrode, a disc-disc electrode, and band-band electrode. These can be used for the direct determination of nitric oxide that is released during the copper-catalyzed decomposition of S-nitroso-L-glutathione (GSNO). The dual UMEs were electrochemically characterized by using ferrocenemethanol as a soluble redox mediator during chronoamperometric measurements. The data are similar to those reported in the literature for various configurations and can be used to characterize the ability of copper ions to reach the vicinity of the NO sensor. One UME was electrochemically modified with layers of a poly(eugenol)/poly(phenol) composite to act as an NO sensor. The second UME was electrochemically coated with a copper layer that serves as a source for Cu(II) that is needed for the in-situ decomposition of GSNO. The mediated decomposition of GSNO is accomplished in presence of ascorbate that acts as reducing agent for Cu(II). The NO released from GSNO is detected at the same potential as applied to form the Cu(II)-based catalyst (+0.8 V vs Ag/AgCl).

We report on the characterization and use of three configurations of dual gold ultramicroelectrodes namely a ring-disc electrode, a disc-disc electrode, and band-band electrode. These can be used for the direct determination of nitric oxide that is released during the copper-catalyzed decomposition of S-nitroso-L-glutathione.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  1. Scharfstein JS, Keaney JF, Slivka A, Welch GN, Vita JA, Stamler JS, Loscalzo J (1994) In-vivo transfer of nitric-oxide between a plasma protein-bound reservoir and low-molecular-weight thiols. J Clin Invest 94(4):1432–1439

    Article  CAS  Google Scholar 

  2. Williams DLH (1999) The chemistry of S-nitrosothiols. Accounts of Chemical Research 32(10):869–876

    Article  CAS  Google Scholar 

  3. Potesil D, Petrlova J, Adam V, Vacek J, Klejdus B, Zehnalek J, Trnkova L, Havel L, Kizek R (2005) Simultaneous femtomole determination of cysteine, reduced and oxidized glutathione, and phytochelatin in maize (Zea mays L.) kernels using high-performance liquid chromatography with electrochemical detection. J Chromatogr A 1084(1–2):134–144

    CAS  Google Scholar 

  4. White PC, Lawrence NS, Davis J, Compton RG (2002) Electrochemical determination of thiols: a perspective. Electroanalysis 14(2):89–98

    Article  CAS  Google Scholar 

  5. Askew SC, Barnett DJ, McAninly J, Williams DLH (1995) Catalysis by Cu2+ of nitric oxide release from S-nitrosothiols (RSNO). Journal of the Chemical Society, Perkin Transactions 2(4)

  6. Shishido SM, de Oliveira MG (2000) Polyethylene glycol matrix reduces the rates of photochemical and thermal release of nitric oxide from S-nitroso-N-acetylcysteine. Photochem Photobiol 71(3):273–280

    Article  CAS  Google Scholar 

  7. David-Dufilho M, Brunet A, Bedioui F (2006) Electrochemical investigation of the role of reducing agents in copper-catalyzed nitric oxide release from S-nitrosoglutathione. Electroanalysis 18(18):1827–1832

    Article  CAS  Google Scholar 

  8. Pfeiffer S, Schrammel A, Schmidt K, Mayer B (1998) Electrochemical determination of S-nitrosothiols with a Clark-type nitric oxide electrode. Anal Biochem 258(1):68–73

    Article  CAS  Google Scholar 

  9. Vitecek J, Petrlova J, Petrek J, Adam V, Potesil D, Havel L, Mikelova R, Trnkova L, Kizek R (2006) Electrochemical study of S-nitrosoglutathione and nitric oxide by carbon fibre NO sensor and cyclic voltammetry - possible way of monitoring of nitric oxide. Electrochim Acta 51(24):5087–5094

    Article  CAS  Google Scholar 

  10. Cha W, Lee Y, Oh BK, Meyerhoff ME (2005) Direct detection of S-nitrosothiols using planar amperometric nitric oxide sensor modified with polymeric films containing catalytic copper species. Anal Chem 77(11):3516–3524

    Article  CAS  Google Scholar 

  11. Cha W, Meyerhoff ME (2006) S-nitrosothiol detection via amperometric nitric oxide sensor with surface modified hydrogel layer containing immobilized organoselenium catalyst. Langmuir 22(25):10830–10836

    Article  CAS  Google Scholar 

  12. Frost MC, Zhang HP, Meyerhoff ME (2001) Synthesis and characterization of nitrosothiol-derivatized fumed silica for use as nitric oxide releasing polymer fillers. Abstracts of Papers of the American Chemical Society 221:U410–U410

    Google Scholar 

  13. Hwang S, Cha W, Meyerhoff ME (2008) Amperometric nitrosothiol sensor using immobilized organoditelluride species as selective catalytic layer. Electroanalysis 20(3):270–279

    Article  CAS  Google Scholar 

  14. Cha W, Meyerhoff ME (2007) Catalytic generation of nitric oxide from S-nitrosothiols using immobilized organoselenium species. Biomaterials 28(1):19–27

    Article  CAS  Google Scholar 

  15. Cha WS, Anderson MR, Zhang FH, Meyerhoff ME (2009) Amperometric S-nitrosothiol sensor with enhanced sensitivity based on organoselenium catalysts. Biosens Bioelectron 24(8):2441–2446

    Article  CAS  Google Scholar 

  16. To Thi Kim L, Girard A, Griscom L, Razan F, Griveau S, Bedioui F (2011) Micro-ring disc ultramicroelectrodes array for direct detection of NO-release from S-nitrosoglutathione. Electrochem Commun 13(7):681–684

    Article  Google Scholar 

  17. Amatore C, Oleinick AI, Svir IB (2003) Simulation of the double hemicylinder generator-collector assembly through conformal mapping technique. J Electroanal Chem 553:49–61

    Article  CAS  Google Scholar 

  18. Baur JE, Motsegood PN (2004) Diffusional interactions at dual disk microelectrodes: comparison of experiment with three-dimensional random walk simulations. J Electroanal Chem 572(1):29–40

    Article  CAS  Google Scholar 

  19. Cutress IJ, Wang Y, Limon-Petersen JG, Dale SEC, Rassaei L, Marken F, Compton RG (2011) RG Dual-microdisk electrodes in and theory transient generator-collector mode: experiment. J Electroanal Chem 655(2):147–153

    Article  CAS  Google Scholar 

  20. French RW, Marken F (2009) Growth and characterization of diffusion junctions between paired gold electrodes: diffusion effects in generator-collector mode. J Solid State Electrochem 13:609–617

    Article  CAS  Google Scholar 

  21. Gabrielli C, Ostermann E, Perrot H, Vivier V, Beitone L, Mace C (2005) Concentration mapping around copper microelectrodes studied by scanning electrochemical microscopy. Electrochem Commun 7(9):962–968

    Article  CAS  Google Scholar 

  22. Han S, Zhai JF, Shi LH, Liu XQ, Niu WX, Li HJ, Xu GB (2007) Rotating minidisk-disk electrodes. Electrochem Commun 9(7):1434–1438

    Article  CAS  Google Scholar 

  23. Harvey SLR, Coxon P, Bates D, Parker KH, O’Hare D (2008) Metallic ring-disc microelectrode fabrication using inverted hollow cylinder supper coater. Sensors and Actuators B 129:659–665

    Article  Google Scholar 

  24. Harvey SLR, Parker KH, O’Hare D (2007) Theoretical evaluation of the collection efficiency at ring-disc microelectrodes. J Electroanal Chem 610(2):122–130

    Article  CAS  Google Scholar 

  25. Liljeroth P, Johans C, Slevin CJ, Quinn BM, Kontturi K (2002) Micro ring-disk electrode probes for scanning electrochemical microscopy. Electrochem Commun 4(1):67–71

    Article  CAS  Google Scholar 

  26. Menshykau D, Cortina-Puig M, del Campo FJ, Munoz FX, Compton RG (2010) RG Plane-recessed disk electrodes and their arrays in transient generator-collector mode: the measurement of the rate of the chemical reaction of electrochemically generated species. J Electroanal Chem 648(1):28–35

    Article  CAS  Google Scholar 

  27. Menshykau D, del Campo FJ, Munoz FX, Compton RG (2009) Current collection efficiency of micro- and nano-ring-recessed disk electrodes and of arrays of these electrodes. Sensors and Actuators B-Chemical 138(1):362–367

    Article  Google Scholar 

  28. Menshykau D, O’Mahony AM, del Campo FJ, Munoz FX, Compton RG (2009) Microarrays of ring-recessed disk electrodes in transient generator-collector mode: theory and experiment. Anal Chem 81(22):9372–9382

    Article  CAS  Google Scholar 

  29. Paixao T, Richter EM, Brito-Neto JGA, Bertotti M (2006) Fabrication of a new generator-collector electrochemical micro-device: characterization and applications. Electrochem Commun 8(1):9–14

    Article  CAS  Google Scholar 

  30. Svir IB, Oleinick AI, Compton RG (2003) Dual microband electrodes: current distributions and diffusion layer ‘titrations’. Implications for electroanalytical measurements. J Electroanal Chem 560(2):117–126

    Article  CAS  Google Scholar 

  31. Yang C, Sun P (2009) Fabrication and characterization of a dual submicrometer-sized electrode. Anal Chem 81:7496–7500

    Article  CAS  Google Scholar 

  32. Zhang CG, Zhang XJ, Yang C, Zhang WM, Yao B, Zhou XY (1996) Properties and applications of carbon fiber dual-cylinder microelectrodes. Electroanalysis 8(10):947–951

    Article  CAS  Google Scholar 

  33. Zhang CG, Zhou XY (1996) Fabrication of a platinum dual-disk microelectrode and investigation of its properties. J Electroanal Chem 415(1–2):65–70

    Google Scholar 

  34. Zhao G, Giolando DM, Kirchhoff JR (1995) Carbon ring-disk ultramicroelectrode. Anal Chem 67:1491–1495

    Article  CAS  Google Scholar 

  35. Quinton D, Girard A, Kim LTT, Raimbault V, Griscom L, Razan F, Griveau S, Bedioui F (2011) On-chip multi-electrochemical sensor array platform for simultaneous screening of nitric oxide and peroxynitrite. Lab Chip 11(7):1342–1350

    Article  CAS  Google Scholar 

  36. Amatore C, Sella C, Thouin L (2006) Electrochemical time-of-flight responses at double-band generator-collector devices under pulsed conditions. J Electroanal Chem 593(1–2):194–202

    CAS  Google Scholar 

  37. Albery WJ, Bruckens S (1966) Ring-disc electrodes .2. Theoretical and experimental collection efficiencies. Trans Faraday Soc 62(523P):1920-&

    Google Scholar 

  38. Bartelt JE, Deakin MR, Amatore C, Wightman RM (1988) Construction and use of paired and triple band microelectrodes in solutions of low ionic strength. Anal Chem 60:2167–2169

    Article  CAS  Google Scholar 

  39. Fosset B, Amatore C, Bartelt J, Wightman RM (1991) Theory and experiment for the collector-generator triple-band electrode. Anal Chem 63(14):1403–1408

    Article  CAS  Google Scholar 

  40. Matysik FM (1997) Voltammetric characterization of a dual disc microelectrode in stationary solution. Electrochim Acta 42(20–22):3113–3116

    Article  CAS  Google Scholar 

  41. Seddon BJ, Wang CF, Peng W, Zhang X (1994) Dual-cylinder microelectrodes, Part 2.t-Steady-state generator and collector electrode currents. Journal of the Chemical Society Faraday Transactions 90:605–608

    Article  CAS  Google Scholar 

  42. Jones DP, Carlson JL, Mody VC, Cai JY, Lynn MJ, Sternberg P (2000) Redox state of glutathione in human plasma. Free Radic Biol Med 28(4):625–635

    Article  CAS  Google Scholar 

  43. Tyurin VA, Liu SX, Tyurina YY, Sussman NB, Hubel CA, Roberts JM, Taylor R, Kagan VE (2001) Elevated levels of S-nitrosoalbumin in preeclampsia plasma. Circ Res 88(11):1210–1215

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial for this research was supported by “Agence Nationale de la Recherche” (ANR France) in the framework of the project MECANO ANR-08-PCVI-0018. AN is thankful to Université de Douala (Cameroun) for offering him the opportunity to travel to Paris for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fethi Bedioui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nassi, A., To Thi Kim, L., Girard, A. et al. Comparison of three different configurations of dual ultramicroelectrodes for the decomposition of S-Nitroso-L-glutathione and the direct detection of nitric oxide. Microchim Acta 179, 337–343 (2012). https://doi.org/10.1007/s00604-012-0860-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-012-0860-z

Keywords

Navigation