Skip to main content
Log in

A cloud point extraction for spectrophotometric determination of ultra- trace antimony without chelating agent in environmental and biological samples

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We report on a simple, sensitive and reliable method for the cloud point extraction of antimony (Sb) and its subsequent spectrophotometric detection. It is based on the color reaction of Sb (III) with iodide in acidic medium and subsequent micelle-mediated extraction of tetraiodoantimonate using a non-ionic surfactant in the absence of any chelating agent. The effects of reaction and extraction parameters were optimized. The calibration plot is linear in the range of 0.80–95 ng mL−1 of antimony in the sample solution, with a regression coefficient (r) of 0.9994 (for n = 9). The detection limit (at SNR = 3) is 0.23 ng mL−1, and the relative standard deviations at 10 and 70 ng mL−1 of antimony are 3.32 and 1.85 % (at n = 8), respectively. The method compared favorably to other methods and was applied to determine antimony in seawater, anti-leishmania drug (glucantime), and human serum.

This method is based on the extraction of yellow iodoantimonous acid (HSbI4) into surfactant-rich phase of Triton X-114 when trivalent antimony in sulfuric acid solution is treated with an excess of potassium iodide solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. United States Environmental Protection Agency, USEPA (1979) Water Related Fate of the 129 Priority Pollutants. Vol. 1, Washington DC, USA, EP-440/4-79-029A

  2. Council of the European Communities (1976) Council Directive 76/464/EEC of 4 May 1976 on pollution caused by certain dangerous substances discharged into the aquatic environment of the community. Official Journal of the European Communities L129:23–29

    Google Scholar 

  3. Vasquez L, Scorza Dagert JV, Scorza JV, Vicuna-Fernandez N, Petit de Pena Y, Lopez S, Bendezu H, Rojas E, Vasquez L, Perez B (2006) Pharmacokinetics of experimental pentavalent antimony after intramuscular administration in adult volunteers. Curr Ther Res 67:193–203

    Article  CAS  Google Scholar 

  4. Flower BA, Goering PL (1991) Antimony. In: Merian E (ed) Metals and their compounds in the environment. VCH, Weinheim

    Google Scholar 

  5. Alkhawajah A, Larbi EB, Jain S, Al-Gindan Y, Abahussain A (1992) Subacute toxicity of pentavalent antimony compounds in rats. Hum Exp Toxicol 11:283–288

    Article  CAS  Google Scholar 

  6. De Wolff FA (1995) Antimony and health. BMJ 310:1216–1217

    Article  Google Scholar 

  7. Trivelin LA, Rohwedder JJR, Rath S (2006) Determination of pentavalent antimony in antileishmaniotic drugs using an automated system for liquid–liquid extraction with on-line detection. Talanta 68:1536–1543

    Article  CAS  Google Scholar 

  8. Dodd M, Grundy SL, Reimer KJ, Cullen WR (1992) Methylated antimony(V) compounds: synthesis, hydride generation properties and implications for aquatic speciation. Appl Organomet Chem 6:207–211

    Article  CAS  Google Scholar 

  9. Zheng J, Iijima A, Furuta N (2001) Complexation effect of antimony compounds with citric acid and its application to the speciation of antimony(III) and antimony(V) using HPLC-ICP-MS. J Anal At Spectrom 16:812–818

    Article  CAS  Google Scholar 

  10. Shrivas K, Agrawal K, Harmukh N (2008) On-site spectrophotometric determination of antimony in water, soil and dust samples of Central India. J Hazard Mater 155:173–178

    Article  CAS  Google Scholar 

  11. Rivas RE, Lopez-García I, Hernández-Córdoba M (2009) Speciation of very low amounts of arsenic and antimony in waters using dispersive liquid–liquid microextraction and electrothermal atomic absorption spectrometry. Spectrochim Acta Part B 64:329–333

    Article  Google Scholar 

  12. Partha C, Fisher AS, Henon DN, Hill SJ (2004) Matrix digestion of soil and sediment samples for extraction of lead, cadmium and antimony and their direct determination by inductively coupled plasma-mass spectrometry and atomic emission spectrometry. Microchim Acta 144:277

    Article  Google Scholar 

  13. Sánchez Rojas F, Bosch Ojeda C, Cano Pavón JM (2007) An ion-exchange method for speciation of antimony by flow injection electrothermal atomic absorption spectrometry. Talanta 71:918–922

    Article  Google Scholar 

  14. Bosch Ojeda C, Sánchez Rojas F, Cano Pavón JM, Terrer Martín L (2005) Use of 1,5-bis (di-2-pyridyl)methylene thiocarbohydrazide immobilized on silica gel for automated preconcentration and selective determination of antimony(III) by flow injection electrothermal atomic absorption spectrometry. Anal Bioanal Chem 382:513–518

    Article  CAS  Google Scholar 

  15. Zarei K, Atabati M, Karami M (2010) Hpoint standard addition method applied to simultaneous kinetic determination of antimony(III) and antimony(V) by adsorptive linear sweep voltammetry. J Hazard Mater 179:840–844

    Article  CAS  Google Scholar 

  16. Zhou CL, Lu Y, Li XL, Luo CN, Zhang ZW, You JM (1998) Adsorptive stripping voltammetric determination of antimony. Talanta 46:1531–1536

    Article  CAS  Google Scholar 

  17. Potin-Gautier M, Pannier F, Quiroz W, Pinochet H, de Gregori I (2005) Antimony speciation analysis in sediment reference materials using high-performance liquid chromatography coupled to hydride generation atomic fluorescence spectrometry. Anal Chim Acta 553:214–222

    Article  CAS  Google Scholar 

  18. Gallignani M, Ovalles F, del Rosario BM, Burguera M, Burguera JL (2005) Flow analysis-hydride generation-gas phase derivative molecular absorption spectrophotometric determination of antimony in oral homeopathic products (“Antimonium Tartaricum”) formulated under alcoholic medium. Talanta 68:365–373

    Article  CAS  Google Scholar 

  19. Ferreira HS, Ferreira SLC, Cervera ML, Guardia MDL (2009) development of a non-chromatographic method for the speciation analysis of inorganic antimony in mushroom samples by hydride generation atomic fluorescence spectrometry. Spectrochim Acta Part B 64:597–600

    Article  Google Scholar 

  20. Gauglitz G, Vo-Dinh T (2003) Handbook of spectroscopy. WILEY-VCH, Germany

    Book  Google Scholar 

  21. Ojeda BC, Rojas FS (2011) Separation and preconcentration by cloud point extraction procedures for determination of ions: recent trends and applications. Microchim Acta. doi:10.1007/s00604-011-0717-x

  22. Yuan CG, Lin K, Chang A (2010) Determination of trace mercury in environmental samples by cold vapor atomic fluorescence spectrometry after cloud point extraction. Microchim Acta 171:313–319

    Article  CAS  Google Scholar 

  23. Zhu X, Zhu Z, Wu Sh (2008) Determination of trace vanadium in soil by cloud point extraction and graphite furnace atomic absorption spectroscopy. Microchim Acta 161:143–148

    Article  CAS  Google Scholar 

  24. Satıroglu N, Arpa C (2008) Cloud point extraction for the determination of trace copper in water samples by flame atomic absorption spectrometry. Microchim Acta 162:107–112

    Article  Google Scholar 

  25. Pinto CG, Pavón JLP, Cordero BM (1996) Cloud point preconcentration and flame atomic absorption spectrometry: application to the determination of cadmium. J Anal At Spectrom 11:37–41

    Article  Google Scholar 

  26. Tani H, Kamidate T, Watanabe T (1997) Micelle-mediated extraction. J Chromatogr A 780:229–241

    Article  CAS  Google Scholar 

  27. Svelha G (1996) Vogel’s qualitative inorganic analysis. Longman, Singapore

    Google Scholar 

  28. Jesus Gomez Gonzalez M, Dominguez Renedo O, Julia Arcos Martinez M (2005) Simultaneous determination of antimony(III) and antimony(V) by UV–Vis spectroscopy and partial least squares method (PLS). Talanta 68:67–71

    Article  Google Scholar 

  29. Shrivas K, Agrawal K, Harmukh N (2008) On-site spectrophotometric determination of antimony in water, soil and dust samples of Central India. J Hazard Mater 155:173–178

    Article  CAS  Google Scholar 

  30. Sanchez Rojas F, Bosch Ojeda C, Cano Pavon JM (2007) Preconcentration of inorganic antimony (III) in environmental samples by PSTH-Dowex microcolumn and determination by FI-ETAAS. Talanta 72:951–956

    Article  Google Scholar 

  31. Zih-Perényi K, Jankovics P, Sugár E, Lásztity A (2008) Solid phase chelating extraction and separation of inorganic antimony species in pharmaceutical and water samples for graphite furnace atomic absorption spectrometry. Spectrochim Acta Part B 63:445–449

    Article  Google Scholar 

  32. Fan Z (2005) Speciation analysis of antimony (III) and antimony (V) by flame atomic absorption spectrometry after separation/preconcentration with cloud point extraction. Microchim Acta 152:29–33

    Article  CAS  Google Scholar 

  33. Zhang J, Zhang G, Zhao C, Quan X, Jia Q (2012) On-line preconcentration/separation of inorganic arsenic and antimony by poly (aryl ether ketone) containing pendant carboxyl groups prior to microwave plasma atomic spectrometry determinations. Microchem J 100:95–99

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdolraouf Samadi-Maybodi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Samadi-Maybodi, A., Rezaei, V. A cloud point extraction for spectrophotometric determination of ultra- trace antimony without chelating agent in environmental and biological samples. Microchim Acta 178, 399–404 (2012). https://doi.org/10.1007/s00604-012-0852-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-012-0852-z

Keywords

Navigation