Skip to main content
Log in

A DNA biosensor based on resonance light scattering using unmodified gold bipyramids

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We report on a novel biosensor for determining sequence-specific DNA. It is based on resonance light scattering (RLS) caused by the aggregation of gold bipyramids. These display localized surface plasmon resonance and can be used as a bioprobe. The absorption spectra and the transmission electron micrographs provide visual evidence of the aggregation of the gold bipyramids in the presence of DNA. The RLS intensity of the gold bipyramids increases with the concentration of the target DNA. The method was successfully applied to the determination of a 30-mer single-stranded oligonucleotide and works over the 0.1–10 nM concentration range.

The electrostatic interaction between the ssDNA and gold bipyramids was the driving force to form gold bipyramid-ssDNA complex. After the target DNA added into the gold bipyramid-ssDNA complex suspension, the hybridization between the target DNA and probe ssDNA happened, which caused the aggregation of gold bipyramids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wood KC, Little SR, Langer R, Hammond PT (2005) A Family of Hierarchically Self-Assembling Linear-Dendritic Hybrid Polymers for Highly Efficient Targeted Gene Delivery. Angew Chem Int Ed 44:6704–6708

    Article  CAS  Google Scholar 

  2. Behr JP (1993) Synthetic Gene-Transfer Vectors. Acc Chem Res 26:274–278

    Article  CAS  Google Scholar 

  3. Hutter E, Pileni MP (2003) Detection of DNA Hybridization by Gold Nanoparticle Enhanced Transmission Surface Plasmon Resonance Spectroscopy. J Phys Chem B 107:6497–6499

    Article  CAS  Google Scholar 

  4. Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA (1997) Selective Colorimetric Detection of Polynucleotides Based on the Distance-Dependent Optical Properties of Gold Nanoparticles. Science 277:1078–1081

    Article  CAS  Google Scholar 

  5. Miao WJ, Bard A (2004) Electrogenerated Chemiluminescence. 77. DNA Hybridization Detection at High Amplification with [Ru(bpy)3]2+-Containing Microspheres. J Anal Chem 76:5379–5386

    Article  CAS  Google Scholar 

  6. Kuhnast B, Dolle F, Terrazzino S, Rousseau B, Loch C, Vaufrey F, Hinnen F, Doignon I, Pillon F, David C, Crouzel C, Tavitian B (2000) General Method to Label Antisense Oligonucleotides with Radioactive Halogens for Pharmacological and Imaging Studies. Bioconj Chem 11:627–636

    Article  CAS  Google Scholar 

  7. Zhao XJ, Tapec-Dytioco R, Tan WH (2003) Ultrasensitive DNA Detection Using Highly Fluorescent Bioconjugated Nanoparticles. J Am Chem Soc 125:11474–11475

    Article  CAS  Google Scholar 

  8. Liu G, Wan Y, Gau V, Zhang J, Wang L, Song S, Fan C (2008) An Enzyme-Based E-DNA Sensor for Sequence-Specific Detection of Femtomolar DNA Targets. J Am Chem Soc 130:6820–6825

    Article  CAS  Google Scholar 

  9. Daniel M-C, Astruc D (2004) Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology. Chem Rev 104:293–346

    Article  CAS  Google Scholar 

  10. Ghosh SK, Pal T (2007) Interparticle Coupling Effect on the Surface Plasmon Resonance of Gold Nanoparticles: From Theory to Applications. Chem Rev 107:4797–4862

    Article  CAS  Google Scholar 

  11. Paraba HJ, Junga C, Leeb J-H, Parka HG (2010) A gold nanorod-based optical DNA biosensor for the diagnosis of pathogens. Biosens Bioelectron 26:667–673

    Article  Google Scholar 

  12. Huang YF, Lin YW, Chang HT (2007) Control of the Surface Charges of Au − Ag Nanorods: Selective Detection of Iron in the Presence of Poly(sodium 4-styrenesulfonate). Langmuir 23:12777–12781

    Article  CAS  Google Scholar 

  13. Ma ZF, Tian L, Wang TT, Wang CG (2010) Optical DNA detection based on gold nanorods aggregation. Anal Chim Acta 673:179–184

    Article  CAS  Google Scholar 

  14. Kou XS, Ni WH, Tsung C-K, Chan K, Lin H-Q, Stucky GD, Wang JF (2007) Growth of Gold Bipyramids with Improved Yield and Their Curvature-Directed Oxidation. Small 3:2103–2113

    Article  CAS  Google Scholar 

  15. Mohamed MB, Volkov V, Link S, El-Sayed MA (2000) The ‘lightning’ gold nanorods: fluorescence enhancement of over a million compared to the gold metal. Chem Phys Lett 317:517–523

    Article  CAS  Google Scholar 

  16. Collings PJ, Gibbs EJ, Starr TE, Vafek O, Yee C, Pomerance LA, Pasternack RF (1999) Resonance Light Scattering and Its Application in Determining the Size, Shape, and Aggregation Number for Supramolecular Assemblies of Chromophores. J Phys Chem B 103:8474–8481

    Article  CAS  Google Scholar 

  17. Hollingshead D, Korade Z, Lewis DA, Levitt P, Mirnics K (2006) DNA self-polymers as microarray probes improve assay sensitivity. J Neurosci Methods 151:216–223

    Article  CAS  Google Scholar 

  18. Pasternack RF, Bustamante C, Collings PJ, Giannetto LA, Gibbs EJ (1993) Porphyrin assemblies on DNA as studied by a resonance light-scattering technique. J Am Chem Soc 115:5393–5399

    Article  CAS  Google Scholar 

  19. Pasternack RF, Collings PJ (1995) Resonance light scattering: a new technique for studying chromophore aggregation. Science 269:935–939

    Article  CAS  Google Scholar 

  20. Huang CZ, Li KA, Tong SY (1996) Determination of Nucleic Acids by a Resonance Light-Scattering Technique with α, β, γ, δ-Tetrakis[4- (trimethylammoniumyl)phenyl]porphine. Anal Chem 68:2259–2263

    Article  CAS  Google Scholar 

  21. Huang CZ, Li KA, Tong SY (1997) Determination of Nanograms of Nucleic Acids by Their Enhancement Effect on the Resonance Light Scattering of the Cobalt(II)/4-[(5-Chloro-2-pyridyl)azo]-1,3-diaminobenzene Complex. Anal Chem 69:514–520

    Article  CAS  Google Scholar 

  22. Chen ZG, Ding WF, Ren FL, Liu JB, Liang YZ (2005) A simple and sensitive assay of nucleic acids based on the enhanced resonance light scattering of zwitterionics. Anal Chim Acta 550:204–209

    Article  CAS  Google Scholar 

  23. Lu W, Huang CZ, Li YF (2002) A sensitive and selective assay of nucleic acids by measuring enhanced total internal reflected resonance light scattering signals deriving from the evanescent field at the water/tetrachloromethane interface. Analyst 127:1392–1396

    Article  CAS  Google Scholar 

  24. Chen ZG, Liu GL, Chen MH, Peng YR, Wu MY (2009) Determination of nanograms of proteins based on decreased resonance light scattering of zwitterionic gemini surfactant. Anal Biochem 384:337–342

    Article  CAS  Google Scholar 

  25. Cao QE, Ding ZT, Fang RB, Zhao XA (2001) Sensitive and rapid method for the determination of protein by the resonance Rayleigh light-scattering technique with Pyrogallol Red. Analyst 126:1444–1448

    Article  CAS  Google Scholar 

  26. Chen ZG, Peng YR, Chen JH, Zhu L (2008) Determination of antibacterial quaternary ammonium compound in lozenges and human serum by resonance light scattering technique. J Pharm Biomed Anal 48:946–950

    Article  CAS  Google Scholar 

  27. Feng P, Shu WQ, Huang CZ, Li YF (2001) Total Internal Reflected Resonance Light Scattering Determination of Chlortetracycline in Body Fluid with the Complex Cation of Chlortetracycline − Europium − Trioctyl Phosphine Oxide at the Water/Tetrachloromethane Interface. Anal Chem 73:4307–4312

    Article  CAS  Google Scholar 

  28. Bao P, Frutos AG, Greef C, Lahiri J, Muller U, Peterson TC, Wardern L, Xie X (2002) High-Sensitivity Detection of DNA Hybridization on Microarrays Using Resonance Light Scattering. Anal Chem 74:1792–1797

    Article  CAS  Google Scholar 

  29. Mayer KM, Hao F, Lee S, Nordlander P (2010) A single molecule immunoassay by localized surface plasmon resonance. Nanotechnology 21:255503

    Article  Google Scholar 

  30. Nome RA, Guffey MJ, Scherer NF (2009) Plasmonic Interactions and Optical Forces between Au Bipyramidal Nanoparticle Dimers. J Phys Chem A 113:4408–4415

    Article  CAS  Google Scholar 

  31. Rosa M, Dias R, Miguel MDG, Lindman B (2005) DNA − Cationic Surfactant Interactions Are Different for Double- and Single-Stranded DNA. Biomacromolecules 6:2164–2171

    Article  CAS  Google Scholar 

  32. Liu SF, Liu J, Han XP, Cui YN, Wang W (2010) Electrochemical DNA biosensor fabrication with hollow gold nanospheres modified electrode and its enhancement in DNA immobilization and hybridization. Biosens Bioelectron 25:1640–1645

    Article  CAS  Google Scholar 

  33. Long YF, Huang CZ, Li YF (2007) Hybridization Detection of DNA by Measuring Organic Small Molecule Amplified Resonance Light Scattering Signals. J Phys Chem B 111:4535–4538

    Article  CAS  Google Scholar 

  34. Kanjanawarut R, Sub XD (2010) Study of nucleic acid–gold nanorod interactions and detecting nucleic acid hybridization using gold nanorod solutions in the presence of sodium citratea. Biointerphases 5:98–104

    Article  Google Scholar 

  35. Gou XC, Liu J, Zhang HL (2010) Monitoring human telomere DNA hybridization and G-quadruplex formation using gold nanorods. Anal Chim Acta 668:208–214

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Tian.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 719 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qi, H., Bi, N., Chen, Y. et al. A DNA biosensor based on resonance light scattering using unmodified gold bipyramids. Microchim Acta 178, 131–137 (2012). https://doi.org/10.1007/s00604-012-0823-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-012-0823-4

Keywords

Navigation