Skip to main content
Log in

Electrochemical detection of rutin with a carbon ionic liquid electrode modified by Nafion, graphene oxide and ionic liquid composite

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We report on a carbon ionic liquid electrode modified with a composite made from Nafion, graphene oxide and ionic liquid, and its application to the sensitive determination of rutin. The modified electrode was characterized by cyclic voltammetry and electrochemical impedance spectroscopy. It shows excellent cyclic voltammetric and differential pulse voltammetric performance due to the presence of nanoscale graphene oxide and the ionic liquid, and their interaction. A pair of well-defined redox peaks of rutin appears at pH 3.0, and the reduction peak current is linearly related to its concentration in the range from 0.08 μM to 0.1 mM with a detection limit of 0.016 μM (at 3σ). The modified electrode displays excellent selectivity and good stability, and was successfully applied to the determination of rutin in tablets with good recovery.

A Nafion, graphene oxide and ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate composite was modified on carbon ionic liquid electrode (CILE) for the sensitive detection of rutin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gene RM, Cartana C, Adzet T, Marin E, Panella T, Canigueral S (1996) Sensitive voltammetric determination of rutin at an in situ plated lead film electrode. Planta Med 62:232–235

    Article  CAS  Google Scholar 

  2. Reynolds JEF, Martindale (1999) The royal pharmaceutical society, 31st edn. Council of the Royal Pharmaceutical Society of Great Britain, London, pp 1679–1680

    Google Scholar 

  3. Chen G, Zhang JX, Ye JN (2001) Determination of puerarin, daidzein and rutin in pueraria lobata (Wild.) ohwi by capillary electrophoresis with electrochemical detection. J Chromatogr A 923:255–262

    Article  CAS  Google Scholar 

  4. Song ZH, Hou S (2002) Sensitive determination of sub-nanogram amounts of rutin by its inhibition on chemiluminescence with immobilized reagents. Talanta 57:59–67

    Article  CAS  Google Scholar 

  5. Temerk YM, Ibrahim HSM, Schuhmann W (2006) Cathodic adsorptive stripping voltammetric determination of the antitumor drug rutin in pharmaceuticals, human urine, and blood serum. Microchim Acta 153:7–13

    Article  CAS  Google Scholar 

  6. Kang JW, Lu XQ, Zeng HJ, Liu HD, Lu BQ (2002) Investigation on the electrochemistry of rutin and its analytical application. Anal Lett 35:677–686

    Article  CAS  Google Scholar 

  7. Mousty C, Cosnier S, Sanchez-Paniagua Lopez M, Lopez-Cabarcos E, Lopez-Ruiz B (2007) Rutin determination at an amperometric biosensor. Electroanalysis 19:253–258

    Article  CAS  Google Scholar 

  8. Wei Y, Wang GF, Li MG, Wang C, Fang B (2007) Determination of rutin using a CeO2 nanoparticle-modified electrode. Microchim Acta 158:269–274

    Article  CAS  Google Scholar 

  9. Zoulis NE, Efstathiou CE (1996) Preconcentration at a carbon-paste electrode and determination by adsorptive-stripping voltammetry of rutin and other flavonoids. Anal Chim Acta 320:255–261

    Article  CAS  Google Scholar 

  10. Maleki N, Safavi A, Tajabadi F (2006) High-performance carbon composite electrode based on an ionic liquid as a binder. Anal Chem 78:3820–3826

    Article  CAS  Google Scholar 

  11. Safavi A, Maleki N, Tajabadi F (2007) Highly stable electrochemical oxidation of phenolic compounds at carbon ionic liquid electrode. Analyst 132:54–58

    Article  CAS  Google Scholar 

  12. Sun W, Li YZ, Yang MX, Liu SF, Jiao K (2008) Direct electrochemistry of single-stranded DNA on an ionic liquid modified carbon paste electrode. Electrochem Commun 10:298–301

    Article  CAS  Google Scholar 

  13. Wang Y, Xiong HY, Zhang XH, Wang SF (2010) Detection of rutin at DNA modified carbon paste electrode based on a mixture of ionic liquid and paraffin oil as a binder. Microchim Acta 170:27–32

    Article  CAS  Google Scholar 

  14. Maleki N, Safavi A, Farjami E, Tajabadi F (2008) Palladium nanoparticle decorated carbon ionic liquid electrode for highly efficient electrocatalytic oxidation and determination of hydrazine. Anal Chim Acta 611:151–155

    Article  CAS  Google Scholar 

  15. Sun W, Qin P, Zhao RJ, Jiao K (2010) Direct electrochemistry and electrocatalysis of hemoglobin on gold nanoparticle decorated carbon ionic liquid electrode. Talanta 80:2177–2181

    Article  CAS  Google Scholar 

  16. Sun W, Li XQ, Qin P, Jiao K (2009) Electrodeposition of Co nanoparticles on the carbon ionic liquid electrode as a platform for myoglobin electrochemical biosensor. J Phys Chem C 113:11294–11300

    Article  CAS  Google Scholar 

  17. Dreyer DR, Jia HP, Bielawski CW (2010) Graphene oxide: a convenient carbocatalyst for facilitating oxidation and hydration reactions. Angew Chem Int Ed 49:6813–6816

    CAS  Google Scholar 

  18. Liang YY, Wu DQ, Feng XL, Mllen K (2009) Dispersion of graphene sheets in organic solvent supported by ionic interactions. Adv Mater 21:1679–1683

    Article  CAS  Google Scholar 

  19. Li XL, Zhang GY, Bai XD, Sun XM, Wang XR, E. Wang EG, Dai HG (2008) Highly conducting graphene sheets and Langmuir-Blodgett films. Nat Nanotechnol 3538–3542

  20. Zhu YW, Murali S, Cai WW, Li XS, Suk JW, Potts JR, Ruoff RS (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22:3906–3924

    Article  CAS  Google Scholar 

  21. Balapanuru J, Yang JW, Xiao S, Bao QL, Jahan M, Polavarapu L, Wei J, Xu QH, Loh KP (2010) A graphene oxide-organic dye ionic complex with DNA-sensing and optical-limiting properties. Angew Chem Int Ed 49:6549–6553

    Article  CAS  Google Scholar 

  22. Jung JH, Cheon DS, Liu F, Lee KB, Seo TS (2010) A graphene oxide based immuno-biosensor for pathogen detection. Angew Chem Int Ed 49:5708–5711

    Article  CAS  Google Scholar 

  23. Lu CH, Yang HH, Zhu CL, Chen X, Chen GN (2009) A graphene platform for sensing biomolecules. Angew Chem Int Ed 48:4785–4787

    Article  CAS  Google Scholar 

  24. Sun W, Duan YY, Li YZ, Zhan TR, Jiao K (2009) Electrochemistry and voltammetric determination of adenosine with N-hexylpyridinium hexafluorophosphate modified electrode. Electroanalysis 21:2667–2673

    Article  CAS  Google Scholar 

  25. Hummers JWS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339

    Article  CAS  Google Scholar 

  26. Bard AJ, Faulkner LR (2001) Electrochemical methods, 2nd edn. Wiley, New York

    Google Scholar 

  27. Nicholson RS, Shain I (1964) Theory of stationary electrode polarography:single scan and cyclic methods applied to reversible, irreversible and kinetic systems. Anal Chem 36:706–723

    Article  CAS  Google Scholar 

  28. Du HJ, Ye JS, Zhang JQ, Huang XD, Yu CZ (2010) Graphene nanosheets modified glassy carbon electrode as a highly sensitive and selective voltammetric sensor for rutin. Electroanalysis 22:2399–2406

    Article  CAS  Google Scholar 

  29. Zhu ZH, Sun XY, Zhuang XM, Zeng Y, Sun W, Huang XT (2010) Single-walled carbon nanotubes modified carbon ionic liquid electrode for sensitive electrochemical detection of rutin. Thin Solid Films 519:928–933

    Article  CAS  Google Scholar 

  30. Anson FC (1964) Application of potentiostatic current integration to the study of the adsorption of cobalt (III)-(ethylenedinitrilotetraacetate) on mercury electrodes. Anal Chem 36:932–934

    Article  CAS  Google Scholar 

  31. Zeng BZ, Wei SH, Xiao F, Zhao FQ (2006) Voltammetric behavior and determination of rutin at a single-walled carbon nanotubes modified gold electrode. Sens Actuators B 115:240–246

    Article  Google Scholar 

  32. Hassan H, Barsoum B, Habib I (1999) Simultaneous spectrophotometric determination of rutin, quercetin and ascorbic acid in drugs using a Kalman Filter approach. J Pharm Biomed Anal 20:315–320

    Article  CAS  Google Scholar 

  33. Yin SH, Zhou YL, Cui L, Liu T, Ju P, Zhu LS, Ai SY (2011) Sensitive voltammetric determination of rutin in pharmaceuticals, human serum, and traditional Chinese medicines using a glassy carbon electrode coated with graphene nanosheets, chitosan, and a poly(amidoamine) dendrimer. Microchim Acta 173:337–345

    Article  CAS  Google Scholar 

  34. Ishii K, Furuta T, Kasuya Y (2001) Determination of rutin in human plasma by high-performance liquid chromatography utilizing solid-phase extraction and ultraviolet detection. J Chromatogr B 759:161–168

    Article  CAS  Google Scholar 

  35. He C, Cui H, Zhao X, Zhao H, Zhao G (1999) Determination of rutin by flow injection with inhibited chemiluminescence detection. Anal Lett 32:2751–2759

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the financial support of the Natural Science Foundation of China (No. 50976043, 21075071, 51076056), the Foundation of State Key Laboratory of Coal Combustion of Huazhong University of Science and Technology (FSKLCC1010) and the Foundation of State Key Laboratory of Clean Energy Utilization of Zhejiang University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, S., Zhu, H., Liu, S. et al. Electrochemical detection of rutin with a carbon ionic liquid electrode modified by Nafion, graphene oxide and ionic liquid composite. Microchim Acta 178, 211–219 (2012). https://doi.org/10.1007/s00604-012-0811-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-012-0811-8

Keywords

Navigation