Skip to main content
Log in

Chemiluminescent determination of the activity of caspase-3 using a specific peptide substrate and magnetic beads

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We report on a new scheme for the determination of the activity of caspase-3 using a specific peptide labeled with N-(4-aminobutyl)-N-ethylisoluminol (ABEI) as a chemiluminescent (CL) probe and on the development of magnetic separation technology. Firstly, the ABEI-labeled and biotinylated peptide was prepared and conjugated to streptavidin-coated magnetic beads (MBs) to form f-MBs (functionalized magnetic beads). The f-MBs contain a site (DEVD, Asp-Glu-Val-Asp) that is cleaved by caspase-3. Upon cleavage, the terminal residue attached to ABEI can dissociate from the f-MBs and can be used for CL detection. CL intensity is linearly related to the concentration of caspase-3 in the range 1.0 to 600 ng mL−1, with a detection limit of 0.3 ng mL−1. The relative standard deviation of the assay is 3.6 % at a level of 50 ng mL−1 of caspase-3 (for n = 11). The CL assay has been applied to the determination of caspase-3 in Jurkat cell extract with recoveries between 96.6 % and 106.1 % (n = 5).

A chemiluminescence assay for the detection of caspase-3 activity using N-(4-aminobutyl)-N-ethylisoluminol labeled specific peptide as CL probe coupling the magnetic separation technology was developed. The developed method has been applied to determination of caspase-3 in Jurkat cells extract with a satisfactory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bredesen DE (2008) Programmed cell death mechanisms in neurological disease. Curr Mol Med 8:173–186

    Article  CAS  Google Scholar 

  2. Hengartner MO (2000) The biochemistry of apoptosis. Nature 407:770–776

    Article  CAS  Google Scholar 

  3. Salvesen GS, Riedl SJ (2008) Caspase mechanisms. Adv Exp Med Biol 615:13–23

    Article  CAS  Google Scholar 

  4. Chen N, Huang Y, Yang LL, Liu RH, Yang JJ (2009) Designing caspase–3 sensors for imaging of apoptosis in living cells. Chem Eur J 15:9311–9314

    Article  CAS  Google Scholar 

  5. Zhang JJ, Zheng TT, Cheng FF, Zhu JJ (2011) Electrochemical sensing for caspase 3 activity and inhibition using quantum dot functionalized carbon nanotube labels. Chem Commun 47:1178–1180

    Article  CAS  Google Scholar 

  6. Ji C, Amarnath V, Pietenpol JA, Marnett LJ (2001) 4-hydroxynonenal induces apoptosis via caspase-3 activation and cytochrome c release. Chem Res Toxicol 14:1090–1096

    Article  CAS  Google Scholar 

  7. Gurtu V, Kain SR, Zhang G (1997) Fluorimetric and colorimetric detection of caspase activity associated with apoptosis. Anal Biochem 251:98–102

    Article  CAS  Google Scholar 

  8. Belloc F, Belaud-Rotureau MA, Lavignolle V, Bascans E, Braz-Pereira E, Durrieu F, Lacombe F (2000) Flow cytometry detection of caspase 3 activation in preapoptotic leukemic cells. Cytometry 40:151–160

    Article  CAS  Google Scholar 

  9. Kohler C, Orrenius S, Zhivotovsky B (2002) Measuring immunity: basic biology and clinical assessment. J Immunol Methods 265:97–110

    Article  CAS  Google Scholar 

  10. Kim K, Lee M, Park H, Kim JH, Kim S, Chung H, Choi K, Kim IS, Seong BL, Kwon IC (2006) Cell–permeable and biocompatible polymeric nanoparticles for apoptosis imaging. J Am Chem Soc 128:3490–3491

    Article  CAS  Google Scholar 

  11. Xiao H, Liu L, Meng FB, Huang JY, Li GX (2008) Electrochemical approach to detect apoptosis. Anal Chem 80:5272–5275

    Article  CAS  Google Scholar 

  12. Boeneman K, Mei BC, Dennis AM, Bao G, Deschamps JR, Mattoussi H, Medintz IL (2009) Sensing caspase 3 activity with quantum dot–fluorescent protein assemblies. J Am Chem Soc 131:3828–3829

    Article  CAS  Google Scholar 

  13. Prasuhn DE, Feltz A, Blanco-Canosa JB, Susumu K, Stewart MH, Mei BC, Yakovlev AV, Loukov C, Mallet JM, Oheim M, Dawson PE, Medintz IL (2010) Quantum dot peptide biosensors for monitoring caspase 3 proteolysis and calcium ions. ACS Nano 4(9):5487–5497

    Article  CAS  Google Scholar 

  14. Zauner T, Berger-Hoffmann R, Muller K, Hoffmann R, Zuchner T (2011) Highly adaptable and sensitive protease assay based on fluorescence resonance energy transfer. Anal Chem 83:7356–7363

    Article  CAS  Google Scholar 

  15. Kihara T, Nakamura C, Suzuki M, Han SW, Fukazawa K, Ishihara K, Miyake J (2009) Development of a method to evaluate caspase–3 activity in a single cell using a nanoneedle and a fluorescent probe. Biosens Bioelectron 25:22–27

    Article  CAS  Google Scholar 

  16. Fletcher P, Andrew KN, Calokerinos AC, Forbes S, Worsfold PJ (2011) Analytical applications of flow injection with chemiluminescence detection–a review. Luminescence 16:1–23

    Article  Google Scholar 

  17. Hun X, Wang ZP (2011) L–Argininamide biosensor based on S1 nuclease hydrolysis signal amplification. Microchim Acta 176:209–216

    Article  Google Scholar 

  18. Cai D, Ren L, Zhao HZ, Xu CJ, Zhang L, Yu Y et al (2010) A molecular imprint nanosensor for ultrasensitive detection of proteins. Anal Chem 82:241–249

    Article  Google Scholar 

  19. Wu J, Fu XC, Xie CG, Yang M, Fang W, Gao S (2011) TiO2 nanoparticles-enhanced luminol chemiluminescence and its analytical applications in organophosphate pesticide imprinting. Sensor Actuators B 160:511–516

    Article  CAS  Google Scholar 

  20. Xie CG, Zhou HK, Gao S, Li HF (2010) Molecular imprinting method for on-line enrichment and chemiluminescent detection of the organophosphate pesticide triazophos. Microchim Acta 171:355–362

    Article  CAS  Google Scholar 

  21. Kulmala S, Suomi J (2003) Current status of modern analytical luminescence methods. Anal Chim Acta 500:21–69

    Article  CAS  Google Scholar 

  22. Gunn DL, Roszman TL (1972) Preparation of sensitive and stable erythrocytes by the carbodiimide method for the detection of primary and secondary IgM and IgG antibody. J Immunol Methods 1:381–389

    Article  CAS  Google Scholar 

  23. Hun X, Chen HC, Wang W (2010) Design of ultrasensitive chemiluminescence detection of lysozyme in cancer cells based on nicking endonuclease signal amplification technology. Biosensor Bioelectron 26:248–254

    Article  Google Scholar 

  24. Albarran B, To R, Stayton PS (2005) A TAT–streptavidin fusion protein directs uptake of biotinylated cargo into mammalian cells. Protein Eng Des Sel 18(3):147–152

    Article  CAS  Google Scholar 

  25. Wang HB, Zhang Q, Chu X, Chen TT, Ge J, Yu RQ (2011) G raphene oxide–peptide conjugate as an intracellular protease sensor for caspase–3 activation imaging in live cells. Angew Chem Int Ed 50:7065–7069

    Article  CAS  Google Scholar 

  26. Burdo TG, Seltz WR (1975) Mechanism of cobalt catalysis of luminol chemiluminescence. Anal Chem 47:1639–1643

    Article  CAS  Google Scholar 

  27. Talanian RV, Quinlan C, Trautz S, Hackett MC, Mankovich JA, Banach D, Ghayur T, Brady KD, Wong WW (1997) Substrate specificities of caspase family proteases. J Biol Chem 272:9677–9682

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaping Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 111 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y. Chemiluminescent determination of the activity of caspase-3 using a specific peptide substrate and magnetic beads. Microchim Acta 177, 443–447 (2012). https://doi.org/10.1007/s00604-012-0798-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-012-0798-1

Keywords

Navigation