Skip to main content
Log in

Direct electrochemistry of hemoglobin on an ionic liquid carbon electrode modified with zinc tungstate nanorods

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We have constructed a new electrochemical biosensor by immobilization of hemoglobin (Hb) and ZnWO4 nanorods in a thin film of chitosan (CTS) on the surface of carbon ionic liquid electrode. UV–vis and FT-IR spectra reveal that Hb remains in its native conformation in the film. The modified electrode was characterized by scanning electron microscopy, electrochemical impedance spectroscopy and cyclic voltammetry. A pair of well-defined redox peaks appears which indicates direct electron transfer from the electrode. The presence of CTS also warrants biocompatibility. The electron transfer coefficient and the apparent heterogeneous electron transfer rate constant were calculated to be 0.35 and 0.757 s−1, respectively. The modified electrode displays good electrocatalytic activity for the reduction of trichloroacetic acid with the detection limit of 0.613 mmol L−1 (3σ). The results extend the protein electrochemistry based on the use of ZnWO4 nanorods.

A ZnWO4 nanorods and hemoglobin nanocomposite material modified carbon ionic liquid electrode was used as the platform for the construction of an electrochemical hemoglobin biosensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Rusling JF (1998) Enzyme bioelectrochemistry in cast biomembrane-like films. Acc Chem Res 31:363–369

    Article  CAS  Google Scholar 

  2. Armstrong FA, Wilson GS (2000) Recent developments in faradaic bioelectrochemistry. Electrochim Acta 45:2623–2645

    Article  CAS  Google Scholar 

  3. Xu J, Liu CH, Wu ZF (2011) Direct electrochemistry and enhanced electrocatalytic activity of hemoglobin entrapped in graphene and ZnO nanosphere composite film. Microchim Acta 172:425–430

    Article  CAS  Google Scholar 

  4. Salimi A, Noorbakhsh A, Ghadermarz M (2005) Direct electrochemistry and electrocatalytic activity of catalase incorporated onto multiwall carbon nanotubes-modified glassy carbon electrode. Anal Biochem 344:16–24

    Article  CAS  Google Scholar 

  5. Lu XB, Hu JQ, Yao X, Wang ZP, Li JH (2006) Composite system based on chitosan and room-temperature ionic liquid: direct electrochemistry and electrocatalysis of hemoglobin. Biomacromolecules 7:975–980

    Article  CAS  Google Scholar 

  6. Xu J, Liu CH, Teng YL (2010) Direct electrochemistry and electrocatalysis of hydrogen peroxide using hemoglobin immobilized in hollow zirconium dioxide spheres and sodium alginate films. Microchim Acta 169:181–186

    Article  CAS  Google Scholar 

  7. Liu HT, Liu Y, Li JH (2010) Ionic liquids in surface electrochemistry. Phys Chem Chem Phys 12:1685–1697

    Article  CAS  Google Scholar 

  8. Wasserscheid P, Welton T (2003) Ionic liquids in synthesis. Wiley-VCH, Weinheim

    Google Scholar 

  9. Liu J, Jiang G, Chi Y, Cai Y, Zhou Q, Hu J (2003) Use of ionic liquids for liquid-phase microextraction of polycyclic aromatic hydrocarbons. Anal Chem 75:5870–5876

    Article  CAS  Google Scholar 

  10. Muhammad JAS, Angel AJT (2011) Application of ionic liquids in electrochemical sensing systems. Biosens Bioelectron 26:1775–1787

    Article  Google Scholar 

  11. Opallo M, Lesniewski A (2011) A review on electrodes modified with ionic liquids. J Electroanal Chem 656:2–16

    Article  CAS  Google Scholar 

  12. Yu P, Lin Y, Xiang L, Su L, Zhang J, Mao L (2005) Molecular films of water-miscible ionic liquids formed on glassy carbon electrodes: characterization and electrochemical applications. Langmuir 21:9000–9006

    Article  CAS  Google Scholar 

  13. Wei W, Jin HH, Zhao GC (2009) A reagentless nitrite biosensor based on direct electron transfer of hemoglobin on a room temperature ionic liquid/carbon nanotube-modified electrode. Microchim Acta 164:167–171

    Article  CAS  Google Scholar 

  14. Maleki N, Safavi A, Tajabadi F (2006) High-performance carbon composite electrode based on an ionic liquid as a binder. Anal Chem 78:3820–3826

    Article  CAS  Google Scholar 

  15. Sun W, Gao RF, Jiao K (2007) Electrochemistry and electrocatalysis of hemoglobin in nafion/nano-CaCO3 film on a new ionic liquid BPPF6 modified carbon paste electrode. J Phys Chem B 111:4560–4567

    Article  CAS  Google Scholar 

  16. Zhu ZH, Li X, Zeng Y, Sun W, Zhu WM, Huang XT (2011) Application of cobalt oxide nanoflower for direct electrochemistry and electrocatalysis of hemoglobin with ionic liquid as enhancer. J Phys Chem C 115(12547):12553

    Google Scholar 

  17. Li XQ, Wang Y, Sun XY, Zhan TR, Sun W (2010) Direct electrochemistry of hemoglobin entrapped in dextran film on carbon ionic liquid electrode. J Chem Sci 122:271–278

    Article  CAS  Google Scholar 

  18. Yoon SH, Kim DW, Cho SY, Hong KS (2006) Investigation of the relations between structure and microwave dielectric properties of divalent metal tungstate compounds. J Eur Ceram Soc 26:2051–2054

    Article  CAS  Google Scholar 

  19. Daturi M, Busca G, Borel MM, Leclaire A, Piaggio P (1997) Vibrational and XRD study of the system CdWO4-CdMoO4. J Phys Chem B 101:4358–4369

    Article  CAS  Google Scholar 

  20. Lin J, Lin J, Zhu YF (2007) Controlled synthesis of the ZnWO4 nanostructure and effects on the photocatalytic performance. Inorg Chem 46:8372–8378

    Article  CAS  Google Scholar 

  21. Li D, Shi R, Pan CS, Zhu YF, Zhao HJ (2011) Influence of ZnWO4 nanorod aspect ratio on the photocatalytic activity. CrystEngComm 13:4695–4700

    Article  CAS  Google Scholar 

  22. Liu B, Yu SH, Li LJ, Zhang F, Zhang Q, Yoshimura M, Shen PK (2004) Nanorod-direct oriented attachment growth and promoted crystallization processes evidenced in case of ZnWO4. J Phys Chem B 108:2788–2792

    Article  CAS  Google Scholar 

  23. Song XC, Yang E, Ma R, Chen HF, Ye ZL, Luo M (2009) Hydrothermal preparation and photoluminescence of bundle-like structure of ZnWO4 nanorods. Appl Phys A 94:185–188

    Article  CAS  Google Scholar 

  24. Bi J, Wu L, Li Z, Ding Z, Wang X, Fu XJ (2009) A facile microwave solvothermal process to synthesize ZnWO4 nanoparticles. Alloy Comp 480:684–688

    Article  CAS  Google Scholar 

  25. Zhao W, Xong X, Chen G, Sun SJ (2009) One-step template-free synthesis of ZnWO4 hollow clusters. Mater Sci 44:3082–3087

    Article  CAS  Google Scholar 

  26. Zhao X, Liu HJ, Qu JH (2010) Photoelectrocatalytic degradation of organic contaminant at hybrid BDD-ZnWO4 electrode. Catal Comm 12:76–79

    Article  CAS  Google Scholar 

  27. Shim HW, Cho IS, Hong KS, Lim AH, Kim DW (2011) Wolframite-type ZnWO4 nanorods as new anodes for Li-ion batteries. J Phys Chem C 115:16228–16233

    Article  CAS  Google Scholar 

  28. Lin MS, Leu HJ (2005) A Fe3O4-based chemical sensor for cathodic determination of hydrogen peroxide. Electroanalysis 17:2068–2073

    Article  CAS  Google Scholar 

  29. Bard AJ, Faulkner LR (1980) Electrochemical methods. Wiley, New York

    Google Scholar 

  30. Laviron E (1979) General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J Electroanal Chem 101:19–28

    Article  CAS  Google Scholar 

  31. Gu HY, Yu AM, Chen HY (2001) Direct electron transfer and characterization of hemoglobin immobilized on a Au colloid-cysteamine-modified gold electrode. J Electroanal Chem 516:119–126

    Article  CAS  Google Scholar 

  32. Sun W, Wang D, Zhai Z, Gao R, Jiao K (2009) Direct electrochemistry of hemoglobin immobilized in the sodium alginate and SiO2 nanoparticles bionanocomposite film on a carbon ionic liquid electrode. J Iran Chem Soc 6:412–419

    Article  CAS  Google Scholar 

  33. Li Q, Luo G, Feng J (2001) Direct electron transfer for heme proteins assembled on nanocrystalline TiO2 film. Electroanalysis 13:359–363

    Article  CAS  Google Scholar 

  34. Ma X, Liu XJ, Xiao H, Li GX (2005) Direct electrochemistry and electrocatalysis of hemoglobin in poly-3-hydroxybutyrate membrane. Biosens Bioelectron 20:1836–1842

    Article  CAS  Google Scholar 

  35. Kamin RA, Willson GS (1980) Rotating ring-disk enzyme electrode for biocatalysis kinetic studies and characterization of the immobilized enzyme layer. Anal Chem 52:1198–1205

    Article  CAS  Google Scholar 

  36. Wang SF, Chen T, Zhang ZL, Shen XC, Lu ZX, Pang DW, Wong KY (2005) Direct electrochemistry and electrocatalysis of heme proteins entrapped in agarose hydrogel films in room-temperature ionic liquids. Langmuir 21:9260–9266

    Article  CAS  Google Scholar 

  37. Sun W, Wang DD, Li GC, Zhai ZQ, Zhao RJ, Jiao K (2008) Direct electron transfer of hemoglobin in a CdS nanorods and Nafion composite film on carbon ionic liquid electrode. Electrochim Acta 53:8217–8221

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the financial support of the Natural Science Foundation of Jiangxi Province (2009GZC0031) and the S&T plan projects of Jiangxi Provincial Education Department (GJJ10590).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chengxiang Ruan or Wei Sun.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 101 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruan, C., Sun, Z., Liu, J. et al. Direct electrochemistry of hemoglobin on an ionic liquid carbon electrode modified with zinc tungstate nanorods. Microchim Acta 177, 457–463 (2012). https://doi.org/10.1007/s00604-012-0796-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-012-0796-3

Keywords

Navigation