Skip to main content
Log in

Electrochemical sensor for lead(II) ion using a carbon ionic-liquid electrode modified with a composite consisting of mesoporous carbon, an ionic liquid, and chitosan

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A novel electrode was prepared that enables sensing of lead(II) ion. A suspension composed of ordered mesoporous carbon (OMC), an ionic liquid (IL), and chitosan was deposited on the highly conductive surface of a carbon ionic-liquid electrode (CILE). The surface of the sensing electrode was characterized by scanning electron microscopy and cyclic voltammetry. The new electrode can be used to determine lead(II) ion because the hydrophobic ionic liquid of the CILE can extract Pb(II), while the OMC accelerates the electron transfer rate between the electrode and Pb(II) and also strongly adsorbs Pb(II). The resulting electrode displays excellent and synergistic response to Pb(II) which is linear in the range from 0.05 to 1.4 μM, with a correlation coefficient of 0.997 and a detection limit of 25 nM.

Differential pluse anodic stripping voltammograms of 5.0 × 10−7 M Pb2+ at (1) CPE (2) CILE, (3) OMC-chitosan/CILE, (4) IL2-chitosan/CILE and (5) OMC-IL2-chitosan/CILE in 10 mM HNO3. Accumulation potential: -1.05 V, accumulation time 200 s, pulse amplitude: 50 mV, pulse width: 50 ms.

A suspension composed of ordered mesoporous carbon (OMC), an ionic liquid (IL), and chitosan was deposited on the highly conductive surface of a carbon ionic-liquid electrode (CILE) to prepare the novel electrode. This modified electrode can be used to determine lead(II) ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kemper T, Sommer S (2002) Estimate of heavy metal contamination in soils after a mining accident using reflectance spectroscopy. Environ Sci Technol 36:2742

    Article  CAS  Google Scholar 

  2. Costodes CT, Faridiret H, Delacroix AJ (2003) Remove of Cd(II) and Pb(II) ions, from aqueous solutions, by adsorption onto sawdust of Pinus sylvestris. J Hazard Mater 105:121

    Article  Google Scholar 

  3. Al-Shawi AW, Dahl R (1996) Determination of lanthanides in magnesium alloys by ion chromatography. Anal Chim Acta 333:23

    Article  CAS  Google Scholar 

  4. Lau QW, Ho SY (1993) Simultaneous determination of traces of iron, cobalt, nickel, copper, mercury and lead in water by energy-dispersive X-ray fluorescence spectrometry after preconcentration as their piperazino-1, 4-bis(dithiocarbamate) complexes. Anal Chim Acta 280:269

    Article  CAS  Google Scholar 

  5. Liu RM, Liu DJ, Sun AL (1993) Simultaneous determination ofmulticomponents by flow injection analysis. Talanta 40:511

    Article  CAS  Google Scholar 

  6. Yantasee W, Charnhattakorn B, Fryxell GE, Lin YH, Timchalk C, Addleman RS (2008) Detection of Cd, Pb, and Cu in non-pretreated natural waters and urine with thiol functionalized mesoporous silica and Nafion composite electrodes. Anal Chim Acta 620:55

    Article  CAS  Google Scholar 

  7. Shams E, Babaei A, Soltaninezhad M (2004) Simultaneous determination of copper, zinc and lead by adsorptive stripping voltammetry in the presence of Morin. Anal Chim Acta 501:119

    Article  CAS  Google Scholar 

  8. Ali A, Ensafi T, Khayamian S, Khaloo (2004) Application of adsorptive cathodic differential pulse stripping method for simultaneous determination of copper and molybdenum using pyrogallol red. Anal Chim Acta 505:201

    Article  Google Scholar 

  9. Economou A, Fielden PR (1998) Selective determination of Ni(II) and Co(II) by flow injection analysis and adsorptive cathodic stripping voltammetry on a wall jet mercury film electrode. Talanta 46:1137

    Article  CAS  Google Scholar 

  10. Wang J, Lu J, Hocevar S, Farias P, Ogorevc B (2000) Bismuth-coated carbon electrodes for anodic stripping voltammetry. Anal Chem 72:3218

    Article  CAS  Google Scholar 

  11. Wang J, Tian B (1993) Mercury-free disposable lead sensors based on potentiometric stripping analysis at gold-coated screen-printed electrodes. Anal Chem 65:1529

    Article  CAS  Google Scholar 

  12. Krasnodebska-Ostrega B, Piekarska J (2005) Determination of lead and cadmium at silver electrode by subtractive anodic stripping voltammetry in plantmaterials containing Tl. Electroanalysis 17:815

    Article  CAS  Google Scholar 

  13. Dai PP, Yang ZS. Sensor for lead(II) ion based on a glassy carbon electrode modified with double-stranded DNA and ferric oxide nanoparticles. Microchim Acta (in press, doi 10.1007/s00604-011-0702-4)

  14. He XH, Chen L, Xie X, Su ZH. Square wave anodic stripping voltammetric determination of lead(II) using a glassy carbon electrode modified with a lead ionophore and multiwalled carbon nanotubes. Microchim Acta (in press, doi 10.1007/s00604-011-0697-x)

  15. Honeychurch K, Hart J, Cowell D, Arrigan D (2002) Voltammetric behavior and trace determination of cadmium at a calixarene modified screen-printed carbon electrode. Electroanalysis 14:177

    Article  CAS  Google Scholar 

  16. Morante-Zarcero S, Sánchez A, Fajardo M, Hierro I, Sierra I (2010) Voltammetric analysis of Pb(II) in natural waters using a carbon paste electrode modified with 5-mercapto-1-methyltetrazol grafted on hexagonal mesoporous silica. Microchim Acta 169:57

    Article  CAS  Google Scholar 

  17. RyooR JSH, Jun SJ (1999) Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation. J Phys Chem B 103:7743

    Article  Google Scholar 

  18. Jun S, Joo SH, Ryoo R, Kruk M, Jaroniec M, Liu Z, Ohsuna T, Terasaki O (2000) Synthesis of new nanoporous carbon with hexagonally ordered mesostructure. J Am Chem Soc 122:10712

    Article  CAS  Google Scholar 

  19. Zhou M, Shang L, Li BL, Huang LJ, Dong SJ (2008) The characteristics of highly ordered mesoporous carbons as electrode material for electrochemical sensing as compared with carbon nanotubes. Electrochem Commun 10:859

    Article  CAS  Google Scholar 

  20. Hou Y, Guo LP, Wang G (2008) Synthesis and electrochemical performance of ordered mesoporous carbons with different pore characteristics for electrocatalytic oxidation of hydroquinone. J Electroanal Chem 617:211

    Article  CAS  Google Scholar 

  21. Ndamanisha JC, Bai J, Qi B, Guo LP (2009) Application of electrochemical properties of ordered mesoporous carbon to the determination of glutathione and cysteine. Anal Biochem 386:79

    Article  CAS  Google Scholar 

  22. Wang XQ, Dai S (2009) A simple method to ordered mesoporous carbons containing nickel nanoparticles. Adsorption 15:138

    Article  CAS  Google Scholar 

  23. Zhuang X, Wan Y, Feng CM, Shen Y, Zhao DY (2009) Highly efficient adsorption of bulky dye molecules in wastewater on ordered mesoporous carbons. Chem Mater 21:706

    Article  CAS  Google Scholar 

  24. Maleki N, Safavi A, Tajabadi F (2006) High-performance carbon composite electrode based on an ionic liquid as a binder. Anal Chem 78:3820

    Article  CAS  Google Scholar 

  25. Liu HT, He P, Li ZY, Sun CY, Shi LH, Liu Y, Zhu GY, Li JH (2005) An ionic iquid-type carbon paste electrode and its polyoxometalate-modified properties. Electrochem Commun 7:1357

    Article  CAS  Google Scholar 

  26. Liu HJ, Qu LN, Hu S, Zhan TR, Zhao CZ, Sun W (2010) Sensitive and simple electrochemical detection of lead (II) with carbon ionic liquid electrode. J Chem Sci 57:1367

    CAS  Google Scholar 

  27. Bo XJ, Bai J, Qi B, Guo LP (2011) Ultra-fine Pt nanoparticles supported on ionic liquid polymer-functionalized ordered mesoporous carbons for nonenzymatic hydrogen peroxide detection. Biosens Bioelectron 28:77

    Article  CAS  Google Scholar 

  28. Visser AE, Swatlowski RP, Griffin ST, Hartman DH, Rogers RD (2001) Liquid/liquid extraction of metal ions in room temperature ionic liquids. Sep Sc Technol 36:785

    Article  CAS  Google Scholar 

  29. Welch CM, Compton RG (2006) The use of nanoparticles in electroanalysis: a review. Anal Bioanal Chem 384:601

    Article  CAS  Google Scholar 

  30. Wang Y, Wei WZ, Liu XY, Zeng XD (2009) Carbon nanotube/chitosan/gold nanoparticles-based glucose biosensor prepared by a layer-by-layer technique. Mater Sci Eng C 29:50

    Article  Google Scholar 

  31. Sun W, Duan YY, Li YZ, Zhan TR, Jiao K (2009) Electrochemistry and voltammetric determination of adenosine with N-Hexylpyridinium hexafluorophosphate modified electrode. Electroanalysis 21:2667

    Article  CAS  Google Scholar 

  32. Maleki N, Safavi A, Tajabadi F (2007) Investigation of the role of ionic liquids in imparting electrocatalytic behavior to carbon paste electrode. Electroanalysis 19:2247

    Article  CAS  Google Scholar 

  33. Zhou M, Guo LP, Hou Y, Peng XJ (2008) Immobilization of Nafion-ordered mesoporous carbon on a glassy carbon electrode: Application to the detection of epinephrine. Electrochim Acta 53:4176

    Article  CAS  Google Scholar 

  34. Richard PSJ, Sakthivel C, Sriman NS (2011) Hg(II) immobilized MWCNT graphite electrode for the anodic stripping voltammetric determination of lead and cadmium. Talanta 85:290

    Article  Google Scholar 

  35. Li HB, Li J, Yang ZJ, Xu Q, Hou CT, Peng JY, Hu XY (2011) Simultaneous determination of ultratrace lead and cadmium by square wave stripping voltammetry with in situ depositing bismuth at Nafion-medical stone doped disposable electrode. J Hazard Mater 191:26

    Article  CAS  Google Scholar 

  36. Senthilkumar S, Saraswathi R (2009) Electrochemical sensing of cadmium and lead ions at zeolite-modified electrodes: Optimization and field measurements. Sens Actuat B 141:65

    Article  Google Scholar 

  37. Hu CG, Wu KB, Dai X, Hu SS (2003) Simultaneous determination of lead(II) and cadmium(II) at a diacetyldioxime modi-fied carbon paste electrode by dierential pluse stripping voltammetry. Talanta 60:17

    Article  CAS  Google Scholar 

  38. Molina TH, Pinilla-Macias JM, Hernandez-Hernandez L (1995) Voltammetric determination of lead with a chemically modified carbon paste electrode with diphenylthiocarbazone. Anal Chim Acta 309:117

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of the National Natural Science Foundation of China (Grant No. 21101075) and the Nature Science Foundation of Shandong Province (Grant No. ZR2011BL012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiurong Zhai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhai, X., Li, L., Gao, H. et al. Electrochemical sensor for lead(II) ion using a carbon ionic-liquid electrode modified with a composite consisting of mesoporous carbon, an ionic liquid, and chitosan. Microchim Acta 177, 373–380 (2012). https://doi.org/10.1007/s00604-012-0785-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-012-0785-6

Keywords

Navigation