Skip to main content
Log in

A strategy to enhance the thermal stability of a nanostructured polypyrrole-based coating for solid phase microextraction

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We report on a nanostructured self-doped polypyrrole (SPPy) film that was prepared by an electrochemical technique in an electrolyte containing fluorosulfonic acid as the sulfonation reagent. The film was applied as a new fiber material for solid-phase microextraction (SPME) of the pesticides lindane, heptachlor, aldrin, endosulfans I and II prior to their quantitation by GC with electron capture detection. The SPPy nanoparticles have a diameter of <100 nm. The introduction of covalently bound sulfo groups into the backbone of the polymer resulted in improved temperature resistance (~350 °C) and satisfactory extraction efficiency. The thermal stability of the SPPy fiber is superior to common polypyrrole fibers. Extraction was optimized by means of the Taguchi orthogonal array experimental design with an OA16 (45) matrix including extraction temperature, extraction time, salt concentration, stirring rate, and headspace volume. The method displays good repeatability (RSD < 6%) and linearity (in the range from 0.78 to 100 ng mL−1; with an R2 of >0.998. The detection limits are <0.23 ng mL−1. The method was successfully applied to the analysis of the pesticides in skimmed milk and fruit juice samples, and recoveries are from 84 ± 1 to 105 ± 1%.

Self–doped nanostructured polypyrrole-based coating was used for SPME analysis of some organochlorine pesticides in milk and fruit juice samples. Improved temperature resistance (~350°C) was obtained for the new developed fiber rather than common used polypyrrole coating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ahlborg U, Lipworth L, Titus-Ernstoff L, Hsieh C, Hanberg A, Baron J, Trichopoulos D, Adami H (1995) Organochlorine compounds in relation to breast cancer, endometrial cancer, and endometriosis: an assessment of the biological and epidemiological evidence. Crit Rev Toxicol 25:463–531. doi:10.3109/10408449509017924

    Article  CAS  Google Scholar 

  2. Page B, Lacroix G (19997) Application of solid–phase microextraction to the headspace gas chromatographic analysis of semi–volatile organochlorine contaminants in aqueous matrices. J Chromatogr A757:173–182. doi:10.1016/S0021-9673(96)00687-5

    Google Scholar 

  3. Li H, Li G, Jen J (2003) Determination of organochlorine pesticides in water using microwave assisted headspace solid–phase microextraction and gas chromatography. J Chromatogr A 1012:129–137. doi:10.1016/S0021-9673(03)00916-6

    Article  CAS  Google Scholar 

  4. Tomkins B, Barnard A (2002) Determination of organochlorine pesticides in ground water using solid–phase microextraction followed by dual–column gas chromatography with electron–capture detection. J Chromatogr A 964:21–33. doi:10.1016/S0021-9673(02)00592-7

    Article  CAS  Google Scholar 

  5. Basheer C, Lee H, Obbard J (2002) Determination of organochlorine pesticides in seawater using liquid–phase hollow fibre membrane microextraction and gas chromatography–mass spectrometry. J Chromatogr A 968:191–199. doi:10.1016/S0021-9673(02)00793-8

    Article  CAS  Google Scholar 

  6. Dong C, Zeng Z, Yang M (2005) Determination of organochlorine pesticides and their derivations in water after HS–SPME using polymethylphenylvinylsiloxane–coated fiber by GC–ECD. Water Res 39:4204–4210. doi:10.1016/j.watres.2005.08.004

    Article  CAS  Google Scholar 

  7. Alvarez M, Llompart M, Lamas J, Lores M, Jares C, Cela R, Dagnac T (2008) Development of a solid–phase microextraction gas chromatography with microelectron–capture detection method for a multiresidue analysis of pesticides in bovine milk. Anal Chim Acta 617:37–50. doi:10.1016/j.aca.2008.01.021

    Article  Google Scholar 

  8. Tien D, Anthony J, Jared I (2011) Chem inform abstract: ionic liquids in solid–phase microextraction. Anal Chim Acta 695:18–43. doi:10.1002/chin.201137279

    Article  Google Scholar 

  9. Bagheri H, Ayazi Z, Sistani H (2011) Chemically bonded carbon nanotubes on modified gold substrate as novel unbreakable solid phase microextraction fiber. Micro chimica Acta 174:295–301. doi:10.1007/s00604-011-0621-4

    CAS  Google Scholar 

  10. Amini R, Rouhollahi A, Adibi M, Mehdinia A (2011) A novel reusable ionic liquid chemically bonded fused-silica fiber for headspace solid-phase microextraction/gas chromatography-flame ionization detection of methyl tert-butyl ether in a gasoline sample. J Chromatogr A 1218:130–136. doi:10.1016/j.chroma.2010.10.114

    Article  CAS  Google Scholar 

  11. Mehdinia A, Mohammadi A, Saeed Hosseiny Davarani S, Banitaba M (2011) Application of Self-Assembled Monolayers in the Preparation of Solid-Phase Microextraction Coatings. Chromatographia 74:421–427. doi:10.1007/s10337-011-2091-6

    Article  CAS  Google Scholar 

  12. Teasdale P, Wallace G (1993) Molecular recognition using conducting polymers: basis of an electrochemical sensing technology–Plenary lecture. Analyst 118:329–334. doi:10.1039/AN9931800329

    Article  CAS  Google Scholar 

  13. Adeloju S, Wallace G (1996) Conducting polymers and the bioanalytical sciences: new tools for biomolecular communications. A review. Analyst 121:699–703. doi:10.1039/AN9962100699

    Article  CAS  Google Scholar 

  14. Wu J, Pawliszyn J (2001) Preparation and applications of polypyrrole films in solid–phase microextraction. J Chromatogr A 909:37–52. doi:10.1016/S0021-9673(00)01025-6

    Article  CAS  Google Scholar 

  15. Gbatu T, Ceylan O, Sutton K, Rubinson J, Galal A, Caruso A, Mark H (1999) Electrochemical control of solid phase micro–extraction using unique conducting polymer coated fibers. Anal Commun 36:203–205. doi:10.1039/A901991J

    Article  CAS  Google Scholar 

  16. Szultka M, Kegler R, Fuchs P, Olszowy P, Miekisch W, Schubert J, Buszewski B, Mundkowski R (2010) Polypyrrole solid phase microextraction: A new approach to rapid sample preparation for the monitoring of antibiotic drugs. Anal Chim Acta 667:77–82. doi:10.1016/j.aca.2010.04.01

    Article  CAS  Google Scholar 

  17. Olszowy P, Szultka M, Nowaczyk J, Buszewski B (2011) A new way of solid-phase microextraction fibers preparation for selected antibiotic drug determination by HPLC–MS. J Chromatogr B879: 2542–2548. doi:10.1016/j.jchromb.2011.07.007

  18. Wu J, Mester Z, Pawliszyn J (2000) Speciation of organoarsenic compounds by polypyrrole–coated capillary in–tube solid phase microextraction coupled with liquid chromatography/electrospray ionization mass spectrometry. Anal Chim Acta 424:211–222. doi:S0003-2670(00)01153-3

    Article  CAS  Google Scholar 

  19. Alizadeh N, Zarabadipour H, Mohammadi A (2007) Headspace solid-phase microextraction using an electrochemically deposited dodecylsulfate-doped polypyrrole film to determine of phenolic compounds in water. Anal Chim Aacta 605:159–165. doi:10.1016/j.aca.2007.10.039

    Article  CAS  Google Scholar 

  20. Bagheri H, Babanezhad E, Es-Haghi A (2007) An aniline–based fiber coating for solid phase microextraction of polycyclic aromatic hydrocarbons from water followed by gas chromatography–mass spectrometry. J Chromatogr A 1152:168–174. doi:10.1016/j.chroma.2007.02.007

    Article  CAS  Google Scholar 

  21. Mohammadi A, Yamini Y, Alizadeh N (2005) Dodecylsulfate–doped polypyrrole film prepared by electrochemical fiber coating technique for headspace solid–phase microextraction of polycyclic aromatic hydrocarbons. J Chromatogr A 1063:1–8. doi:10.1016/j.chroma.2004.11.087

    Article  CAS  Google Scholar 

  22. Asadollahzadeh H, Noroozian E, Maghsoudi S (2010) Solid–phase microextraction of phthalate esters from aqueous media by electrochemically deposited carbon nanotube/polypyrrole composite on a stainless steel fiber. Anal Chim Acta 669:32–38. doi:10.1016/j.aca.2010.04.029

    Article  CAS  Google Scholar 

  23. Chena L, Chenb W, Ma C, Dud D, Chen X (2011) Electropolymerized multiwalled carbon nanotubes/polypyrrole fiber for solid–phase microextraction and its applications in the determination of pyrethroids. Talanta 84:104–108. doi:10.1016/j.talanta.2010.12.027

    Article  Google Scholar 

  24. Mehdinia A, Ghassempour A, Rafati H, Heydari R (2007) Determination of N–vinyl–2–pyrrolidone and N–methyl–2–pyrrolidone in drugs using polypyrrole–based headspace solid–phase microextraction and gas chromatography–nitrogen–phosphorous detection. Anal Chim Acta 587:82–88. doi:10.1016/j.aca.2006.12.052

    Article  CAS  Google Scholar 

  25. Skotheim T (1998) Handbook of conducting polymers. Marcel Dekker, New York

    Google Scholar 

  26. Nalwa H (1997) Handbook of organic conductive molecules and polymers. Wiley, New York

    Google Scholar 

  27. Sadki S, Schottland P, Brodie N, Sabouraud G (2000) The mechanisms of pyrrole electropolymerization. Chem Soc Rev 29:283–293. doi:10.1039/A807124A

    Article  Google Scholar 

  28. Mollahosseini A, Noroozian E (2009) Polyphosphate–doped polypyrrole coated on steel fiber for the solid–phase microextraction of organochlorine pesticides in water. Anal Chim Acta 638:169–174. doi:10.1016/j.aca.2009.02.053

    Article  CAS  Google Scholar 

  29. Zaidi N, Foreman J, Tzamalis G, Monkman S, Monkman A (2004) Alkyl Substituent Effects on the Conductivity of Polyaniline. Adv Funct Mater 14:479–486. doi:10.1002/adfm.200305488

    Article  CAS  Google Scholar 

  30. Sahin Y, Aydin A, Udum Y, Pekmez K, Yildiz A (2004) Electrochemical Synthesis of Sulfonated Polypyrrole in FSO3H/Acetonitrile Solution. J Appl Polym Sci 93:526–533. doi:10.1002/app.20473

    Article  CAS  Google Scholar 

  31. Swapnarao P, Sathyanarayana D (2002) Effect of the sulfonic acid group on copolymers of aniline and toluidine with m–aminobenzene sulfonic acid Polym. Sci Polym Chem 40:4065–4076. doi:10.1002/pola.10495

    Article  Google Scholar 

  32. Pawliszyn J (1997) Solid phase microextraction, theory and practice. Wiley–VCH Inc., 97, New York

  33. Mehdinia A, Roohi F, Jabbari A, Manafi M (2011) Self–doped polyaniline as a new substitute of polyaniline for solid–phase microextraction. Anal Chim Acta 683:206–211. doi:10.1016/j.aca.2010.10.031

    Article  CAS  Google Scholar 

  34. Mehdinia A, Asiabi M, Jabbari A, Kalaee M (2010) Preparation and evaluation of solid–phase microextraction fiber based on nano–structured copolymer of aniline and m–amino benzoic acid coating for the analysis of fatty acids in zooplanktons. J Chromatogr A 1217:642–7647. doi:10.1111/j.1600-0846.2010.00459

    Article  Google Scholar 

  35. Wang D, Xing J, Peng J, Wu C (2003) Novel benzo–15–crown–5 sol–gel coating for solid–phase microextraction. J Chromatogr A 1005:1–12. doi:10.1016/S0021-9673(03)00884-7

    Article  CAS  Google Scholar 

  36. Gholivand M, Abolghasemi M, Fattahpour P (2011) Polypyrrole/hexagonally ordered silica nanocomposite as a novel fiber coating for solid-phase microextraction. Anal Chim Acta 704:174–179. doi:10.1016/j.aca.2011.07.045

    Article  CAS  Google Scholar 

  37. Yu J, Dong L, Wu C, Wu L, Xing J (2002) Hydroxyfullerene as a novel coating for solid–phase microextraction fiber with sol–gel technology. J Chromatogr A 978:37–48. doi:10.1016/S0021-9673(02)01347-X

    Article  CAS  Google Scholar 

  38. Li X, Chen J, Du L (2007) Analysis of chloro–and nitrobenzenes in water by a simple polyaniline–based solid–phase microextraction coupled with gas chromatography. J Chromatogr A 1140:21–28. doi:10.1016/j.chroma.2006.11.044.27

    Article  CAS  Google Scholar 

  39. Roy R (1990) A primer on Taguchi method. Van Nostrand Reinhold, New York

    Google Scholar 

  40. Sarkouhi M, Yamini Y, Khalili Zanjani M, Afsharnaderi A (2007) Liquid–phase microextraction and gas–chromatographic determination of selenium(IV) in aqueous samples. Int Environ Anal Chem 87:603–614. doi:10.1080/03067310701273119

    Article  CAS  Google Scholar 

  41. Billot P, Pitard B (1992) Taguchi design experiments for optimizing the gas chromatographic analysis of residual solvents in bulk pharmaceuticals. J Chromatogr A 623:305–313. doi:10.1016/0021-9673(92)80370-A

    Article  CAS  Google Scholar 

  42. Sobhi HR, Yamini Y, Abadi RH (2007) Extraction and determination of trace amounts of chlorpromazine in biological fluids using hollow fiber liquid phase microextraction followed by high–performance liquid chromatography. J Pharm Biomed Anal 45:769–774. doi:10.1016/j.jpba.2007.09.026

    Google Scholar 

  43. Tauguchi G (1986) System of experimental design. Kraus International, New York

  44. Oles P (1993) Solid–phase microextraction using pencil lead as sorbent for analysis of organic pollutants in water. J Aoac Int 76:615–619. doi:10.1016/0003-2670(94)00270-3

  45. López F, Pitarch E, Egea S, Beltran J, Hernánde F (2001) Preconcentration of diazinon using multiwalled carbon nanotubes as solid–phase extraction adsorbentsdoi. Anal Chim Acta 433:217–226. doi:10.1016/j.microc.2007.10.002

    Article  Google Scholar 

Download references

Acknowledgements

The Research council and graduates school of Khajeh Nasir Toosi University (K.N.T.U) and Iranian National Institute for Oceanography is acknowledged for supporting the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Mehdinia.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 533 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mehdinia, A., Bashour, F., Roohi, F. et al. A strategy to enhance the thermal stability of a nanostructured polypyrrole-based coating for solid phase microextraction. Microchim Acta 177, 301–308 (2012). https://doi.org/10.1007/s00604-012-0771-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-012-0771-z

Keywords

Navigation