Skip to main content
Log in

Determination of L-cysteine base on the reversion of fluorescence quenching of calcein by copper(II) ion

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We report on a simple and sensitive method for the determination of L-cysteine (Cys). It is based on a redox reaction between the non-fluorescent Cu(II)-calcein complex and Cys which results in fluorescence recovery of calcein. When Cys is added to a solution of the Cu(II)-calcein complex, Cu(II) is reduced to Cu(I), and calcein is released to form a strongly fluorescent complex with Zn(II). The effect was used to develop a fluorescence enhancement method for the determination of Cys. Under the optimum conditions, the increase in signal intensity is linear in the range from 3.0 × 10−7 to 1.2 × 10−5 mol L−1, with a correlation coefficient (R) of 0.9978. The limit of detection (3σ) is 4.0 × 10−8 mol L−1. The relative standard deviation (RSD) in the determination of 11 samples containing 5.0 × 10−6 mol L−1 of Cys was 3.5%. There is little interference by common ions and other amino acids. The method, which is simple, rapid, and sensitive, was successfully applied to the determination of Cys in human serum samples.

Calcein is strongly fluorescent in water solution. It could form a non-fluorescent complex with Cu2+. When Cys is added to a solution of the Cu(II)-calcein complex, Cu(II) is reduced to Cu(I), and calcein is released to form a strongly fluorescent complex with Zn(II).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bulaj G, Kortemme T, Goldenberg DP (1998) Ionization-Reactivity Relationships for Cysteine Thiols in Polypeptides. Biochemistry 37:8965

    Article  CAS  Google Scholar 

  2. Lau CW, Qin XJ, Liang JY, Lu JZ (2004) Determination of cysteine in a pharmaceutical formulation by flow injection analysis with a chemiluminescence detector. Anal Chim Acta 514:45

    Article  CAS  Google Scholar 

  3. Wang WH, Rusin O, Xu XY, Kim KK (2005) Detection of Homocysteine and Cysteine. J Am Chem Soc 127:15949

    Article  CAS  Google Scholar 

  4. Perez-Ruiz T, Martinez-Lozano C, Tomas V, Lambertos G (1991) Flow-injection successive determination of cysteine and cystine in pharmaceutical preparations. Talanta 38:1235

    Article  CAS  Google Scholar 

  5. Perez-Ruiz T, Martinez-Lozano C, Tomas V, Martin J (2002) Flow injection chemiluminescent method for the successive determination of L-cystine using photogenerated tris(2,2ˊ-bipyridyl) ruthenium (III). Talanta 58:987

    Article  CAS  Google Scholar 

  6. Shahrokhian S (2001) Lead Phthalocyanine as a Selecitive Carrier for Preparation of a Cysteine-Selective Electrode. Anal Chem 73:5972

    Article  CAS  Google Scholar 

  7. Ruiz-Diaz JJJ, Torriero AAJ, Salinas E, Marchevsky EJ, Sanz MI (2006) Enzymatic rotating biosensor for cysteine and glutathione determination in a FIA system. Talanta 68:1343

    Article  CAS  Google Scholar 

  8. Wsaeem A, Yaqoob M, Nabi A (2008) Flow-injection determination of cysteine in pharmaceuticals based on luminol-persulphate chemiluminescence detection. Luminescence 23:144

    Article  Google Scholar 

  9. Teshima N, Nobuta T, Sakai T (2001) Simultaneous flow injection determination of ascorbic acid and cysteine using double flow cell. Anal Chim Acta 438:21

    Article  CAS  Google Scholar 

  10. Zhao C, Zhang JC, Song JF (2001) Determination of Cysteine in Amino Acid Mixture and Human Urine by Flow-injection Analysis with a Biamperometric Detector. Anal Biochem 297:170

    Article  CAS  Google Scholar 

  11. Amarmath K, Amarmath V, Amarmath K, Valentine HL, Valentine WM (2003) Aspecific HPLC-UV method for the determination of cysteine and related aminothiols in biological samples. Talanta 60:1229

    Article  Google Scholar 

  12. Tcherkas YV, Denisenko AD (2001) Simultaneous determination of several amino acids, including homocysteine, cysteine and glutamic acid, in human plasma by isocratic reversed-phase high-performance liquid chromatography with fluorimetric detection. J Chromatogr A 913:309

    Article  CAS  Google Scholar 

  13. Fermo I, Arcelloni C, Paroni R (2002) High-performance liquid chromatographic method to quantify total cysteine excretion in urine. Anal Biochem 307:181

    Article  CAS  Google Scholar 

  14. Kusmierek K, Blowback R, Bald E (2006) Analysis of urine for cysteine, cysteinylglycine, and homocysteine by high-performance liquid chromatography. Anal Bioanal Chem 385:855

    Article  CAS  Google Scholar 

  15. Ye ML, Xu B, Zhang WD (2011) Sputtering deposition of Pt nanoparticles on vertically aligned multiwalled carbon nanotubes for sensing L-cysteine. Microchim Acta 172:429

    Article  Google Scholar 

  16. Mijidi MR, Zeynali AK, Hafezi B (2010) Sensing L-cysteine in urine using a pencil graphite electrode modified with a copper hexacyanoferrate manostructure. Microchim Acta 169:283

    Article  Google Scholar 

  17. Shahrokhian S, Karimi M (2004) Voltammetric studies of a cobalt(II)-4-methylsalophen modified carbon-paste electrode and its application for the simultaneous determination of cysteine and ascorbic acid. Electrochim Acta 50:77

    Article  CAS  Google Scholar 

  18. Amini MK, Khorasani JH, Khaloo SS, Tangestaninejad S (2003) Cobalt(II)-salophen-modified carbon-paste electrode for potentiometric and voltammetric determination of cysteine. Anal Biochem 320:32

    Article  CAS  Google Scholar 

  19. Jin WR, Wang Y (1997) Determination of cysteine by capillary zone electrophoresis with end-column amperometric detection at a gold/mercury amalgam microelectrode without deoxygenation. J Chromatogr 769:307

    Article  CAS  Google Scholar 

  20. Kuster A, Teal I, Sweeten S, Roze J, Robins RJ, Darmaum D (2008) Simultaneous determination of glutathione and cysteine concentrations and H-2 enrichments in microvolumes of neonatal blood using gas chromatography–mass spectrometry. Anal Bioanal Chem 390:1403

    Article  Google Scholar 

  21. Guo Y, Shao SJ (2004) A specific colorimetric cysteine sensing probe based on dipyrromethane-TCNQ assembly. Tetrahedron Lett 45:6477

    Article  CAS  Google Scholar 

  22. Amamath V, Amarnath K (2002) Specific determination of cysteine and penicillamine through cyclization to 2-thioxothiazolidine-4-carboxylic acids. Talanta 56:745

    Article  Google Scholar 

  23. Lunar ML, Rubio S, Perez-Bendito D, Carreto ML, McLeod CW (1997) Hexadecylpyridinium chloride micelles for the simultaneous kinetic determination of cysteine and cystine by their induction of the iodine-azide. Anal Chim Acta 337:341

    Article  Google Scholar 

  24. Liao WS, Wu FY, Wu YM, Wang XJ (2008) Highly sensitive spectrofluorimetric determination of cysteine by Cu2+-morin complex. Microchim Acta 162:147

    Article  CAS  Google Scholar 

  25. Wang H, Wang WS, Zhang HS (2001) A spectrofluorimetric method for cysteine and glutathione using the fluorescence system of Zn(II)–8-hydroxyquinoline-5-sulphonic acid complex. Spectrochim Acta A 57:2403

    Article  CAS  Google Scholar 

  26. Wang H, Wang WS, Zhang HS (2001) Spectrofluorimetic determination of cysteine based on the fluorescence inhibition of Cd(II)–8-hydroxyquinoline-5-sulphonic acid complex by cysteine. Talanta 53:1015

    Article  CAS  Google Scholar 

  27. Huang YM, Zhang ZJ, Lv JG, Cheng H (2000) Flow-injection analysis-fluorescence detection for the in vivo on-line determination of calcium in blood with microdialysis sampling. Anal Chim Acta 419:175

    Article  CAS  Google Scholar 

  28. Ali A, Zhang Q, Dai JS, Huang X (2003) Calcein as a fluorescent iron chemosensor for the determination of low molecular weight iron in biological fluids. Biometals 16:285

    Article  CAS  Google Scholar 

  29. Berregi I, Durand JS, Casado JA (1999) Simultaneous spectrofluorimetric determination of the rare earths with calcein. Talanta 48:719

    Article  CAS  Google Scholar 

  30. Li HB, Chen F (2000) A highly sensitive fluorimetric method for the determination of fluoride in biological material with Al3+-calcein complex. Fresenius J Anal Chem 368:501

    Article  CAS  Google Scholar 

  31. Zhu ZC (2001) Determination of Nucleic Acids Using Calcein-Neodymium Complex as a Fluorescence Probe. Anal Sci 17:1375

    Article  CAS  Google Scholar 

  32. Fei N, Ru LJ (2007) Determination of ketotifen by using calcein as chemiluminescence reagent. Anal Chim Acta 592:168

    Article  Google Scholar 

  33. Yu FS, Ding YB, Gao YW, Zheng SS, Chen F (2008) Fluorescence enhancement effect for the determination of DNA with calcein-cetyl trimethyl ammonium bromide system. Anal Chim Acta 625:195

    Article  CAS  Google Scholar 

  34. Ozkan Y, Ozkan E, Simsek B (2002) Plasma total homocysteine and cysteine levels as cardiovascular risk factors in coronary heart disease. Int J Cardiol 82:269

    Article  Google Scholar 

  35. Sattarahmady N, Heli H (2011) An electrocatalytic transducer for L-cysteine detection based on cobalt hexacyanoferrate nanoparticles with a core-shell structure. Anal Biochem 409:74

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support from National Natural Science Foundation of China(No. 20805016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, L., Wu, T. & Chen, F. Determination of L-cysteine base on the reversion of fluorescence quenching of calcein by copper(II) ion. Microchim Acta 177, 295–300 (2012). https://doi.org/10.1007/s00604-011-0759-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-011-0759-0

Keywords

Navigation